Chemical Technology, Control and Management

Volume 2018 Issue 1 SPECIAL ISSUE 1-2

Article 19

4-28-2018

The systems concept to mathematical process modeling of carbonization

I.H Siddikov

Doctor of Technical Sciences, Professor, Department of Information Processing Systems and Management, Tashkent State Technical University, Tel.: 246-03-45,, isamiddin54@gmail.com

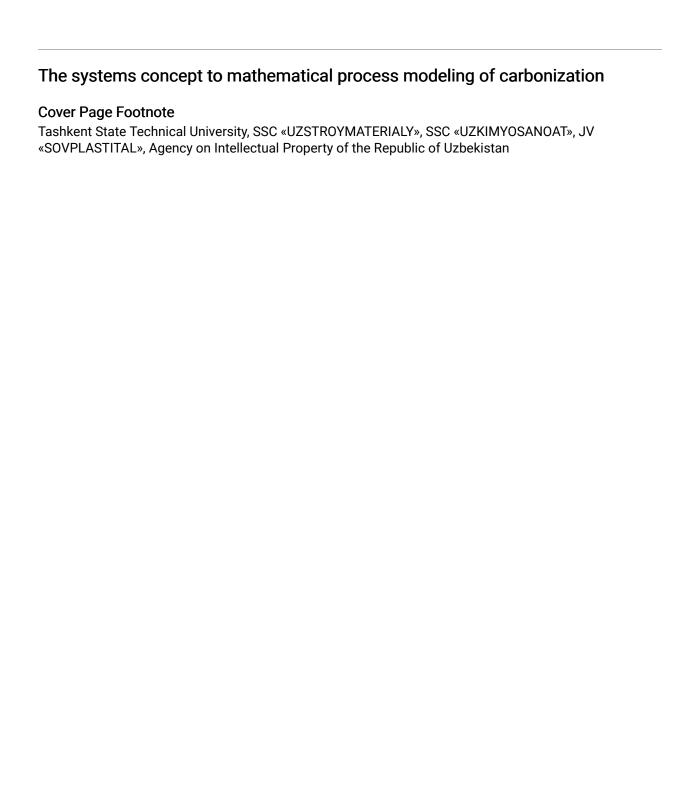
Z.E Iskandarov

Senior Lecturer, Department of Automation of Production Processes, Tashkent State Technical University, Tel: +99897-709-06-81 (M.),, zohid_1981@mail.ru

D.B Yadgarova

PhD student, Department of Information Processing Systems and Management, Tashkent State Technical University, Tel: 2371998

Follow this and additional works at: https://ijctcm.researchcommons.org/journal



Part of the Engineering Commons

Recommended Citation

Siddikov, I.H; Iskandarov, Z.E; and Yadgarova, D.B (2018) "The systems concept to mathematical process modeling of carbonization," Chemical Technology, Control and Management: Vol. 2018: Iss. 1, Article 19. DOI: https://doi.org/10.34920/2018.1-2.112-117

This Article is brought to you for free and open access by Chemical Technology, Control and Management. It has been accepted for inclusion in Chemical Technology, Control and Management by an authorized editor of Chemical Technology, Control and Management. For more information, please contact app-tgtu@mail.ru.

ISSN 1815-4840

Himičeskaâ tehnologiâ. Kontrol' i upravlenie

CHEMICAL TECHNOLOGY. CONTROL AND MANAGEMENT

2018, №1-2 (79-80) pp. 112-117. https://doi.org/10.34920/2018.1-2.112-117

International scientific and technical journal journal homepage: https://uzjournals.edu.uz/ijctcm/

Since 2005

УДК 681.62-50

И.Х.СИДДИКОВ, З.Э.ИСКАНДАРОВ, Д.Б.ЯДГАРОВА (ТГТУ)

СИСТЕМНЫЙ ПОДХОД К МАТЕМАТИЧЕСКОМУ МОДЕЛИРОВАНИЮ ПРОЦЕССА КАРБОНИЗАЦИИ

Мураккаб кўп босқичли карбонизациялаш жараёнини математик моделлаштиришда тизимли ёндашув массаласи кўрилган бўлиб, у жараёнда кимёвий реакциянинг стехометрик муносабатни хисобга олиш имконини беради. Карбонизацияллаш колоннасида содир бўладиган кимёвий реакция асосида карбонизациалаш жараёнини кинетик модели таклиф этилган бўлиб, у жараёнинг асосий сифат кўрсаткичи - карбонизациялаш колоннасидаги натрий чиқиндиси даражаси учун математик моделнинг асосий функционал муносабатини олишга асос бўлади. Стехиометрик муносабат ва кимёвий реакциянинг қайтарилиш коэффициентига асосланган математик модел кўринишида таклиф этилган тизимли ёндашув кимёвий жараён учун сифат кўрсаткичлар бўйича бошқариш тизимини яратиш ва қайтарилувчи кимёвий жараён объектини тезкор бошқариш мақсадида тузилган моделнинг структурасини окилоналигини асослаш имконини беради.

Таянч сузлар: карбонизациялашнинг математик модели, нейрон тармоқ модели, стехиометрик матрица, кимёвий реакция, асосий компонентлар, имитацион модель, концентрация, абсорбция, харорат, натрийни утилизациялаш.

Реализован системный подход к математическому моделированию сложного многостадийного процесса карбонизации, позволяющий учитывать стехиометрические зависимости протекающих реакций. Предложена кинетическая модель процесса карбонизации на основе химических реакций, протекающих в карбонизационной колонне. Модель является основой получения функциональной зависимости в виде основного показателя качества процесса степени утилизации натрия от выходных потоков карбонизационной колонны.

Предлагаемый подход к разработке математических моделей, базирующихся на стехиометрических соотношениях и коэффициентах обратимости протекающих реакций, позволяет разрабатывать системы управления по показателям качества для химических процессов и обосновать рациональность структуры модели для целей оперативного управления объектами химических процессов с обратимыми реакциями.

Ключевые слова: математическая модель, карбонизация, нейросетевая модель, стехиометрическая матрица, химическая реакция, ключевые компоненты, имитационная модель, концентрация, абсорбция, температура, утилизация натрия

Considers a systematic approach to mathematical modeling of a complex, multistage carbonization process, which allows for taking into account the stoichiometric dependencies of the ongoing reactions. A kinetic model of the carbonization process based on chemical reactions in the carbonation column is proposed, which is the basis for obtaining the functional dependence in the form of a mathematical model of the main indicator of process quality-the degree of sodium utilization from the outlet streams of the carbonation column.

The proposed systematic approach to the development of mathematical models based on stoichiometric ratios and the coefficients of reversibility of the ongoing reactions makes it possible to develop control systems for quality indicators for chemical processes and to justify the rationality of the model structure for the purposes of operational control of objects of chemical processes with reversible reactions.

Key words: mathematical model, carbonization, neural network model, stoichiometric matrix, chemical reaction, key components, simulation model, concentration, absorption, temperature, sodium utilization.

Актуальность реальной задачи. Кальцинированная сода — один из важнейших продуктов неорганического синтеза. Она широко используется в разных отраслях промышленности [1]. Процесс карбонизации является основным процессом в производстве кальцинированной соды и его

протекание оказывает значительное влияние на качественные показатели содовых продуктов.

Карбонизационная колонна как объект исследования (управления) обладает нелинейной характеристикой. Это связано с тем, что внутренние поверхности аппарата покрывается коркой NaHC03, образующегося из карбонизированного раствора. Следует также отметить, что изменение условий теплообмена в течение «пробега» колонны носит стохастический характер. Сложность управления процессом карбонизации характеризуется тем, что последний протекает с обратимыми реакциями химических реагентов, находящихся в трех фазовых состояния, связан с нестабильностью сырья [2,3].

С другой стороны, карбонизационная колонна представляет собой многомерный объект управления, в котором не все параметры могут быть измерены в оперативном режиме. Эти и другие факторы усложняют решение задачи управления процессом карбонизации, поскольку известные классические методы управления не позволяют полностью раскрыть механизм химических реакций, протекающих в исследуемом объекте, а также отразить изменчивость параметров в пространственно-временном интервале. В этом связи актуально создание математической модели процесса карбонизации с учетом кинетических уравнений реакции.

В карбонизационной колонне непрерывного типа концентрация каждого реагента в каждом сечении в результате химических превращений значительно изменяется. Для учета этих особенностей в работе предлагается разработать гибридную кинетическую нейросетевую модель процесса, позволяющую учитывать неопределенность факторов, влияющих на ход технологического процесса. Кроме того, появляется возможность оперативного определения показателей качества продукции для целей поддержания режимов, близким к оптимальным.

Метод решения здачи. Для решения поставленной задачи первоначально будем строить математическую модель процесса карбонизации, т.е. определять зависимость степени утилизации натрия от температур и давления с учетом обеспечения определенных соотношения между реагирующими компонентами внутри колонны.

В процессе карбонизации протекает абсорбция диоксида углерода аммонизированным раствором. Достижение максимально возможной степени карбонизации системы зависит от концентрации CO_2 в карбонизующем газе. CO_2 поступает на карбонизацию из отделений содовых и известковых печей. В производстве соды необходимо обеспечить возможно более высокую концентрацию CO_2 в газе известково-обжигательных печей, которая зависит от расхода топлива.

При этом на концентрацию CO_2 влияют такие факторы, как расход воздуха, температура газов верхней и нижней части печи, давление газа в печи. Для решения этой задачи рассмотрим основные химические реакции, протекающие в карбонизационной колонне, а также особенности химических реакций, протекающие в карбонизационной колонне, используя кинетическую модель реакции. Известно, что химические реакции, протекающие в колонне состоят из четырёх этапов:

$$NH_4OH \rightarrow NH_3 + H_2O$$
,
 $2NH_3 + H_2O + CO_2 = (NH_4)_2CO_3$, (1)
 $(NH_4)_2CO_3 + CO_2 + H_2O = 2NH_4HCO_3$,
 $NH_4HCO_3 + NaCl = NaHCO_3 + NH_4Cl$.

С учетом этих факторов будем строить математическую модель. Для математического представления этих реакций вводим следующие обозначения: x_I – NH₄OH - аммония гидроокись; x_2 – NH₃ - аммиак; x_3 – H₂O - вода; x_4 – CO₂ двуокись углерода; x_5 – (NH₄)₂CO₃ - аммоний углекислый; x_6 – NH₄HCO₃ - аммоний двууглекислый; x_7 – NaCl – хлорид натрия; x_8 – NaHCO₃ - гидрокарбонат натрия; x_9 – NH₄Cl - аммоний хлористый.

Тогда кинетические уравнения реакций представляется в виде математических соотношений следующим образом:

$$\begin{array}{l}
1 \xrightarrow{k_1} x_2 + x_3 \\
2x_2 + x_3 + x_4 & \xrightarrow{k_3, k_2} x_5 \\
x_5 + x_4 + x_3 & \xrightarrow{k_5, k_4} 2x_6 \\
x_6 + x_7 & \xrightarrow{k_7, k_6} x_8 + x_9
\end{array} \tag{2}$$

Выразим скорость протекания химических реакций каждого этапа:

$$\omega_{1} = k_{1}Cx_{1}
\omega_{2} = k_{2}C_{x2}^{2}C_{x3}C_{x4} - k_{3}C_{x5}
\omega_{3} = k_{4}C_{x5}C_{x4}C_{x3} - k_{5}C_{x6}^{2}
\omega_{4} = k_{6}C_{x6}C_{x7} - k_{7}C_{x8}C_{x9}$$
(3)

Здесь: C_{xi} - мольная концентрация компонентов; $k_1 - k_7$ - константы скоростей химической реакции соответствующего направления, определяющим уравнением Аррениуса []:

$$k(T) = k_0 \cdot e^{-\frac{Ea\kappa}{RT}}$$

где k_0 - предэкспоненциальный множитель; $E_{a\kappa}$ - энергия активации стадии, кал/моль; T - абсолютная температура, K; R - универсальная газовая постоянная, кал/(моль*K).

Обозначая через g_{x1} скорость изменения компонентов x_i , получим матричное представление системы уравнений:

$$\begin{bmatrix}
g_{x1} \\
g_{x2} \\
g_{x3} \\
g_{x4} \\
g_{x5} \\
g_{x6} \\
g_{x7} \\
g_{x8} \\
g_{x9}
\end{bmatrix} = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 \\
1 & -1 & -1 & 0 \\
0 & -1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
\omega_1 \\
\omega_2 \\
\omega_3 \\
\omega_4
\end{bmatrix} \tag{4}$$

Полученная матрица является матрицей стехиометрических коэффициентов, которая формально представляет собой скорость изменения компонентов химических реакции.

Среди компонентов химической реакции любой сложности можно выделить ключевые и не ключевые. Число ключевых компонентов химической реакции равно рангу матрицы стехиометрических коэффициентов. Поскольку ранг стехиометрической матрицы (4) равно 4, то это означает количество ключевых компонентов для химических реакции (2) равна 4. Выбор ключевых компонентов осуществляется исходя из микрокинетических соотношений, характеризующих скорости изменения химической реакции компонентов. Для выбора ключевых компонентов, исходя из микрокинетических соотношений (4а) запишем выражения с учетом скоростей химической реакции по компонентам.

Скорости изменения ключевых компонентов которые непосредственно влияют на ход технологического процесса карбонизации, представляются в виде:

$$gx_4 = gx_1 + gx_3$$

$$gx_5 = g_{x3} - g_{x2}$$

$$gx_6 = g_{x1} - g_{x1} + 2g_{x3} + g_{x7}$$

$$g_{x8} = g_{x9} = -g_{x7}$$
(4a)

Отсюда видно, что ключевые компоненты для рассматриваемого процесса $-x_1, x_3, x_6, u x_7$.

Полученная информационная модель строится на базисе стехиометрических соотношений, следовательно позволяет вести вычисления в различных направлениях.

Поскольку процесс карбонизации происходит в карбонизационной колонне высотой 27 м и является нестационнарным объектом, то уравнение покомпонентного баланса для динамической модели объекта с распределенными параметрами можно записать следующим образом:

$$\frac{1}{L}\frac{\partial(V^R x_i)}{\partial t} = -\frac{\partial(v \cdot x_i)}{\partial l} + \frac{V^R}{L}gx_i \qquad i = \overline{1,9}.$$
 (6)

Здесь L - высота карбонизационной колонны; V^R - объем карбонизационной колонны; ν -объемный расход потока;

$$g_{xi} = \sum_{i=1}^{m} C_{ij} k_j$$

Для стационарного режима уравнения движения (6) имеют вид:

$$\frac{\partial (v \cdot x_i)}{\partial l} = \frac{V^R}{L} g_{xi} \tag{7}$$

Ключевые компоненты уравнения (7) можем представить в следующем виде:

$$\frac{dC_{x_1}}{dl} = \frac{V^R}{vL} (-k_1 C_{x_1})$$

$$\frac{dC_{x_2}}{dl} = \frac{V^R}{vL} (-k_1 C_{x_1} - 2k_2 C_{x_2}^2 C_{x_3} C_{x_4} - k_3 C_{x_5})$$

$$\frac{dC_{x_3}}{dl} = \frac{V^R}{vL} (k_1 C_{x_1} - 2k_2 C_{x_2}^2 C x_3 C_{x_4} - k_3 C_{x_5} - k_4 C_{x_5} C_{x_4} C_{x_3} + k_5 C_{x_6}^2)$$

$$\frac{dC_{x_7}}{dl} = \frac{V^R}{vL} (-k_6 C_{x_6} C_{x_7} + k_7 C_{x_8} C_{x_9})$$
(8)

Неключевые компоненты изменения концентрации определяются на основе (4а).

$$\frac{dC_{x4}}{dl} = C_{x1} + C_{x3}
\frac{dC_{x5}}{dl} = C_{x3} + C_{x2}
\frac{dC_{x6}}{dl} = C_{x2} - C_{x1} + 2C_{x3} + C_{x7}
\frac{dC_{x8}}{dl} = \frac{dC_{x9}}{dl} = C_{x7}$$
(9)

На основе уравнений (8) и (9) составим математическую модель при начальных условиях соответствующих условиям технологического регламента.

Для решения этой задачи с помощью программной среды Matlab строить вычислительноимитационную модель процесса (рис.1), характеризующую характер изменения концентрации компонентов по длине.

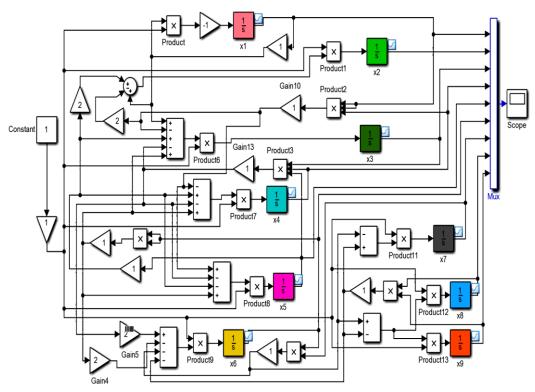
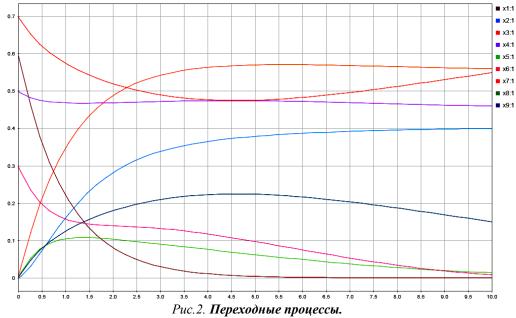



Рис. 1. Имитационная модель процесса карбонизации.

Задавая начальные условия для переменным в соответствии с технологическим регламентом для стационарного режима получим графики изменения компонентов по длине колонны.

Проведенный имитационный эксперимент показал (табл.), что состав химических компонентов не превышает 5 % по сравнению с лабораторным анализом и показывает достоверность полученных результатов.

Таблица Сравнение результатов лабораторного анализа и имитационного эксперимента

Наименование продукта	Состав суспензии на выходе из карбонизационной колонны, мольные доли.		Относительная
	Лабораторные данные	Расчётные данные	погрешность
x ₁ - NH ₄ OH	2,73054e-05	0,00002724	0,24
$x_2 - NH_3$	0,40616298	0,4002	1,49
x ₃ - H ₂ O	0,56342616	0,5604	0,54
$x_4 - CO_2$	0,46091445	0,4605	0,09
x ₅ - (NH ₄) ₂ CO ₃	0,014413704	0,01387	3,92
x ₆ - NH ₄ HCO ₃	0,008008902	0,007645	4,76
x ₇ - NaCl	0,55184383	0,5497	0,39
x ₈ - NaHCO ₃	0,15608655	0,1503	3,85
x ₉ – NH ₄ Cl	0,15489918	0,1503	3.06

Заключение. Использование рассмотренной математической модели в составе системы управления технологическим процессом карбонизации позволяет:

- 1) снизить потери гидрокарбоната натрия;
- 2) повысить производственный выход целевого продукта суспензия гидрокарбонатанатрия остаточной влаги в гидрокарбоната натрия;
 - 3) сократить образование мелких частиц гидрокарбоната натрия.

Список литературы:

- 1. I.D.Zaycev, G.A.Tkach, N.D.Stoev, "Proizvodstvo sody" [The powder production], Moskva: Himiya,1986, 311 p. (in Russian)
- 2. A.G.Afanasenko, YU.A.Gnatenko, "Matematicheskoe modelirovanie i optimizaciya processa karbonizacii ammonizirovannogo rassola" [Mathematical modeling and optimization of the carbonation process of ammoniated brine], *Matematicheskoe modelirovanie*, no. 8, pp. 105-110, 2008. (in Russian).
- 3. V.I.Gostev, "Proektirovanie nechetkih regulyatorov dlya sistem avtomaticheskogo upravleniya" [Design of fuzzy controllers for automatic control systems], SPb: BHV-Peterburg, 2011, 416 p. (in Russian).
- 4. I.H.Siddikov, YU.A.Jukova, D.B.YAdgarova, "Adaptivny'y algoritm upravleniya dinamicheskimi processami na baze neyronechetkoy tehnologii" [Adaptive algorithm for control of dynamic processes on the basis of neuro-fuzzy technology], *Problemy' vy'chislitel'noy i prikladnoy matematiki*, no. 5, pp. 80-83, 2017. (in Russian).
- I.Siddikov, Z.Iskandarov, "Synthesis of adaptive-fuzzy control system of dynamic in conditions of uncertainty of information" *International Journal of Advanced Research in Science, Engineering and Technology*, vol. 5, pp. 5089-5093. Issue 1, January 2018.
- 6. R.Usmanov, I.Siddikov, N.Yakubova, A.Rahmanov, "Adaptive identification of the Neural system of Controlling nonlinear Dynamic Objects" *International Journal of Advanced Research in Science, Engineering and Technology*, vol. 5,pp. 5195-5199, Issue 2, February 2018.

Сиддиков Исомиддин Хакимович — доктор технических наук, профессор кафедры «Системы обработки информации и управление», ТГТУ, Тел.: 246-03-45, E-mail: isamiddin54@gmail.com; Искандаров Зохид Эргашбаевич — старший преподаватель кафедры «Автоматизация производственных процессов», ТГТУ, Тел: +99897-709-06-81 (м.), E-mail: zohid 1981@mail.ru; Ядгарова Дилноза Бахтияровна-докторант кафедры «Системы обработки информации и управление», ТГТУ, Тел: 2371998 E-mail:yadgarova2858@mail.com.