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Abstract: This paper is devoted to the modeling and synthesis of an adaptive neuro-fuzzy control system for steam 

generator temperature. Temperature control systems play an important role in industry because accurate and stable control 

is a prerequisite for the efficient operation of steam systems. Traditional control methods based on mathematical models and 

fixed parameter controllers may have limitations in providing optimal performance and adapting to changing operating 

conditions. The paper proposes a synthesized system combining fuzzy logic and adaptation methods to achieve more accurate 

and stable temperature control. A detailed structural diagram of the system, modeling, and tuning methods are presented. 

The results of the study can be applied to improve the efficiency and reliability of temperature control in steam generators 

in various industries. The proposed control system has the potential for application in various industrial sectors where 

accurate and adaptive temperature control of steam generators is required. It can help to improve process efficiency and 

reduce energy costs. 

Keywords: Modeling, synthesized adaptive-fuzzy system, control, temperature, steam generator, industry, accuracy, 

stability, efficiency, mathematical models, regulators, adaptation, uncertainty, production. 

 

Annotatsiya: Ushbu ish bug‘ generatori haroratini adaptiv neyro-noravshan boshqaruv tizimini modellashtirish va 

sintez qilishga bag‘ishlangan. Haroratni boshqarish tizimlari ishlab chiqarishda muhim rol o‘ynaydi, chunki aniqlik va 

barqarorlikni boshqarish bug‘ ishlab chiqarish tizimlarining samarali ishlashi uchun zaruriy shart hisoblanadi. Matematik 

modellar va parametrlarni boshqarish qurilmalariga asoslangan an’anaviy boshqaruv usullari optimal ishlashni ta’minlash 

va o‘zgaruvchan ish sharoitlariga moslashishda cheklovlarga ega bo‘lishi mumkin. Maqolada haroratni aniqroq va 

barqaror boshqarishga erishish uchun noravshan-mantiq va moslashish usullarini birlashtirgan sintezlangan tizim taklif 

etiladi. Tizimning tarkibiy tuzilmasi, modellashtirish va sozlash usullari keltirilgan. Tadqiqot natijalari turli sohalardagi 

bug‘ generatorlarida haroratni boshqarish samaradorligi va ishonchliligini oshirish uchun qo‘llanilishi mumkin. Taklif 

etilayotgan boshqaruv tizimi bug‘ generatorlarining haroratini aniq va moslashuvchan boshqarish zarur bo‘lgan turli sanoat 

tarmoqlarida foydalanish imkoniyatiga ega. Bu jarayonlarning samaradorligini oshirishga va energiya xarajatlarini 

kamaytirishga yordam beradi. 

Tayanch so‘zlar: modellashtirish, sintezlangan adaptiv-noravshan tizim, boshqaruv, harorat, bug‘ generatori, 

sanoat, aniqlik, barqarorlik, samaradorlik, matematik modellar, rostlagichlar, moslashish, noaniqlik, ishlab chiqarish. 

 

Аннотация: Работа посвящена синтезу адаптивной нейро-нечеткой системы управления температурой 

парогенератора. В промышленности системы управления температурой играют важную роль, поскольку точное 

и стабильное управление является необходимым условием для эффективной работы паровых систем. 

Традиционные методы управления, основанные на математических моделях и регуляторах с фиксированными 

параметрами, могут иметь ограничения в обеспечении оптимальной производительности и адаптации к 

изменяющимся условиям эксплуатации. В работе предлагается синтезированная система, объединяющая 

нечеткую логику и методы адаптации, для достижения более точного и стабильного управления температурой. 

Представлены детальная структурная схема системы, методы моделирования и настройки. Результаты 

исследования могут быть применены для повышения эффективности и надежности управления температурой в 

парогенераторах в различных отраслях. Предложенная система управления имеет потенциал для применения в 

https://ijctcm.researchcommons.org/journal/
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различных промышленных секторах, где требуется точное и адаптивное управление температурой 

парогенераторов. Она может способствовать повышению эффективности процессов и снижению энергетических 

затрат. 

Ключевые слова: Моделирование, синтезированная адаптивно-нечеткая система, управление, 

температура, парогенератор, промышленность, точность, стабильность, эффективность, математические 

модели, регуляторы, адаптация, неопределенность, производство. 

 

Introduction 

In modern industry, temperature control systems play an important role in ensuring optimal 

operation of steam generators. Accurate and stable temperature control is integral to the efficient 

operation of steam systems and to achieving the required production results. Temperature control 

systems play a key role in ensuring the stability and accuracy of the heating process in a steam generator. 

Traditional control algorithms based on mathematical models and fixed parameter controllers can have 

some limitations in providing optimal performance and adapting to changing operating conditions. 

In recent years, considerable attention has been paid to the development of adaptive and fuzzy 

control systems, which can achieve more flexible and efficient temperature control. Adaptive systems 

have the ability to self-learn and adapt to variable conditions, while fuzzy logic allows the uncertainty 

and fuzziness of the input data to be taken into account. These systems reduce the influence of external 

disturbances and parameter variations on the control process, providing more accurate and stable 

temperature control. 

Traditional methods of temperature control include the use of mathematical models and fixed 

parameter controllers. However, such approaches can have limitations in providing high control 

accuracy and adapting to changing operating conditions. 

The purpose of this The aim of this paper is to develop and model a synthesised adaptive-fuzzy 

control system for steam generator temperature. The application of such a system can lead to the increase 

of accuracy and stability of control, as well as to the reduction of the influence of external perturbations 

and parameter changes on the heating process. influence of external perturbations and parameter changes 

on the heating process of the steam generator. This approach improves the adaptive properties of the 

system by combining fuzzy logic and adaptation methods with a reference model, which is a virtual 

representation of the real control object. 

The study will present a detailed structural diagram of the synthesised adaptive-fuzzy control 

system and describe its modeling and tuning methods. This will make it possible to apply the developed 

system to improve the efficiency and reliability of temperature control in steam generators, which is of 

practical importance in various industries including power generation, chemical industry and 

manufacturing. The system model will be based on the mathematical foundations of fuzzy logic and 

adaptivity, which will achieve optimal control of steam generator temperature. 

In recent years, a lot of research has been conducted in the modeling and synthesis of adaptive-

fuzzy systems for steam generator temperature control. In this review, we consider a few key works 

dealing with this topic. 

One of the early works that laid the foundation for adaptive fuzzy control of steam generator 

temperature was done by Shimomori and Maeda. In their study, an adaptive control system based on 

fuzzy logic was proposed to control the temperature in a steam generator. The results showed that the 

proposed system provides stable and accurate control over a wide range of operating conditions [1]. 

Another significant work was carried out by Gao and Chen. They proposed a modified adaptive-

fuzzy control system for a steam generator based on the combination of adaptivity and fuzzy logic. 

Numerical simulation results showed that the proposed system provides higher control accuracy and 

better adaptation to changing operating conditions compared to conventional methods [2]. 

Also worth mentioning is Lee's work, in which a hybrid adaptive-fuzzy control system for steam 

generator temperature control was proposed. This system combines fuzzy logic with genetic algorithm 

to optimise the controller parameters. The results of the study showed that the proposed system provides 

better performance and more efficient temperature control [3]. 
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More recent studies also include the application of neural networks in adaptive fuzzy temperature 

control systems for steam generators. For example, the work of Zhu et al. proposed a hybrid system 

combining fuzzy logic and deep neural networks for optimal temperature control. The results showed 

that this approach can achieve high control accuracy and better adaptation to variable conditions [4]. 

In general, the research on modeling and synthesis of adaptive-fuzzy control systems for steam 

generator temperature control continues to develop. Various methods such as fuzzy logic, adaptivity, 

genetic algorithms and neural networks are applied to improve the control efficiency and accuracy. 

However, there are still many problems that require further research, such as uncertainty accounting, 

optimisation of system parameters and integration with other aspects of steam systems. 

 

Research Methods 

The present work represents a new contribution in the field of modeling adaptive-fuzzy 

temperature control systems for steam generators. It builds on previous research and seeks to develop a 

synthesised system that will provide more accurate and stable temperature control as well as accounting 

for variable operating conditions and disturbances. 

Considering the presented research results, a structural scheme of a modified adaptive-fuzzy 

steam generator temperature control system including a reference model has been developed as shown 

in Figure 1. This scheme is an integration of adaptivity and fuzzy logic to achieve accurate and stable 

control of steam generator temperature under different operating conditions. 

The reference model is the key element in the system and is used to estimate the control error. It 

is a mathematical model of the steam generator based on physical principles and identified from 

experimental data. The reference model compares the output data with the desired values and generates 

the control error, which is then used to adjust the fuzzy logic parameters [5-7]. 

Fuzzy logic includes a set of fuzzy rules that define the relationship between the input and output 

variables of a system. It allows to take into account the uncertainty and vagueness of input data, which 

is especially important when dealing with steam generators where operating conditions may vary. 

The adaptability of the system is realised by tuning the fuzzy logic parameters based on 

optimisation methods. The system parameters can be changed in real time to adapt to the changing 

operating conditions of the steam generator and provide optimal temperature control [8-12]. 

The developed structural scheme of a modified adaptive-fuzzy steam generator temperature 

control system is an innovative approach that achieves high control accuracy and stability. Its application 

can have a significant potential to improve process efficiency and reduce energy costs in industrial 

sectors where steam generators are key components. 

 
Fig. 1. Structural diagram of an adaptive fuzzy control system for steam generator temperature control. 

 

Here in the control loop is introduced a block of “adaptation algorithm” designed to evaluate and 

adjust the structure and parameters of the observer, as well as an adaptation block to adjust the nonlinear 

neuro-fuzzy controller. 

One of the main tasks in the development of a neural-phase network based controller is the 

training of the network, as it significantly affects the accuracy and speed of calculation of control actions, 
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i.e., the generation of fuzzy-logic output. This is directly related to the reduction of computational 

complexity, which leads to the simplification of software implementation of algorithms based on neural 

network and fuzzy logic [13]. 

This approach provides a number of additional advantages, such as operability of the system 

under conditions of incomplete initial information and the possibility of adjusting the regulator 

parameters in the process of system operation. 

Currently, there are known approaches to the construction of fuzzy logic inference models based 

on the Mamdani and Takagi-Sugeno models [14]. At the same time for training fuzzy systems, as a rule, 

adaptive neuro-fuzzy inference systems (ANFIS - adaptive neuro-fuzzy inference system) [15] and 

hybrid technologies combining fuzzy models in the form of artificial neural networks [16], genetic 

algorithms [17] are used.  

The high dimensionality of the analyzed object and the large number of input variables lead to 

an exponential increase in the number of fuzzy inference conclusions. This, in turn, decreases the 

accuracy of training fuzzy models. 

The reason for this is that traditional fuzzy logic inference algorithms rely on rigid arithmetic 

operations, such as finding the minimum and maximum, which can be limiting. 

Additionally, the accuracy of fuzzy logic models is affected by the architecture of the fuzzy rules 

and the chosen defuzzification method. 

To overcome these drawbacks, the proposed approach uses soft arithmetic operations in fuzzy 

models to determine the minimum and maximum. This allows the control actions to be calculated while 

considering changes in the input parameters. Furthermore, the area difference method is used for training 

the neuro-fuzzy system. 

It is important to note that the performance of the neuro-fuzzy network is significantly influenced 

by the form of the membership function (MF). In this paper, the relationship between input and output 

variables is formed using triangular membership functions based on fuzzy rules of the form: 

iinniii yYxXxXxXIfRule ====  then  andand  and  : 2211  ,   (1) 

where nX  - input variable; n  - number of input variables; inx  - linguistic term describing input MFs; i 

- number of terms y of input/output variable; Y  - output variable; ix  - linguistic term describing output 

MFs.  

The centre of gravity method can be used to calculate the resulting signal: 
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where min, max - integration limits of the fuzzy set; ( )y  - MF of the output variable after realisation 

on the basis of fuzzy rules of the fuzzy inference procedure. 

Estimation of the fuzzy system is carried out by the criterion of standard deviation: 
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where dsety  - set of trained data; M  - number of points in the trained sample. 

Soft arithmetic operations in fuzzy logic inference define the concepts of soft minimum and soft 

maximum. These operations provide a more gradual and flexible approach compared to the traditional 

minimum and maximum operations: 
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Soft maximum: 

.7,0 ,))(1(5,0),max(),max( 212121 =+−+=−  wherexxxxxxsoft  

In the defuzzification process, the variables are calculated using the area difference method. 

The training algorithm for the neuro-fuzzy system consists of the following steps, with the terms 

of the membership function represented by triangular or trapezoidal membership functions. 
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where a , b , c , d  - parameters of the membership function; x - quantitative value of the input 

parameter having triangular form for the fuzzy system. 

The neuro-fuzzy system under consideration has two input variables,      1312111 xxxX ++=  

and      2322212 xxxX ++= , each with three terms, and one output variable, 

         54321 yyyyyYy ++++= , with five terms. 

Step 1: Fuzzification operation of the input variables. 

Step 2: Determination of the membership degree for each input information received. 

Step 3: Synthesizing the knowledge base containing fuzzy rules as shown in Table 1. 

Table 1 
Fuzzy inference knowledge base  

FR If Then FR If Then FR If Then 

FR1 х11 х21 y5 FR4 х11 х21 y4 FR4 х11 х21 y3 

FR2 х11 х22 y4 FR5 х11 х22 y3 FR5 х11 х22 y2 

FR3 х11 x23 y3 FR6 х11 x23 y2 FR6 х11 x23 y1 

 

The introduction of truncated membership functions ensures a rational positioning of the 

elements in the fuzzy relation matrix. As a result, the number of conclusions in the fuzzy inference is 

equal to the number of terms at the output membership function, which in this case is 6 (as shown in 

Table 1). In contrast, traditional fuzzy logic models would have a number of conclusions equal to the 

number of fuzzy rules, which would typically be between 9 and 15. Therefore, the proposed approach 

reduces the complexity of the fuzzy inference compared to traditional methods. 

In Step 4, the defuzzification operation is carried out using the area difference method. In this 

case, the areas of the triangular or trapezoidal membership function terms are calculated using the 

following formula: 

( )321 4
6

bbb
h

S ++= , 
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where h  - height of the geometrical figure; 
1b , 

2b , 3b  - lengths of the lower, middle and upper bases 

of the geometrical figure. 

Table 2 
Matrix of fuzzy relations 

Day off 

term 
Composition Maximum 

'

5y  b1=soft-min(x11;x21) b5=soft-min(x12;x22)  b1 

'

4y  b1=soft-min(x11;x21) b4=soft-min(x12;x21)  soft-max(b2;b4) 

'

3y  b1=soft-min(x11;x21) b5=soft-min(x12;x22) b7=soft-min(x13;x21) soft-max(b3;b5;b7) 

'

2y  b1=soft-min(x11;x21) b8=soft-min(x13;x22) soft-max(b2;b4) soft-max(b6;b8) 

'

1y  b1=soft-min(x11;x21)   b9 

 

In Step 5: Network Acquisition, when training the neuro-fuzzy inference system, the standard 

ANFIS error backpropagation method can be utilized. However, in this specific case, the correction of 

the truncated areas of the output variable terms is performed until the output value defuzy  is as close as 

possible to the reference value, according to the following relation: 

( ) ( )
etaldefuziout yywy −+=  ,       (2) 

In the training step of the neuro-fuzzy inference system, the input value is denoted as  , and the target 

output value is typically set to 02,0=  by default. 

The weight parameters of the neural network, denoted as w, are calculated using the standard 

ANFIS error propagation method. Based on this algorithm, the structural schematic of the ANFIS is 

developed, as shown in Fig. 2. This ANFIS structure consists of 9 layers. 

Let us consider the operations performed on each layer:  

In layer 1, a vector of input variables ( )21, xxfUout =  obtained from the sensors of the control 

system is formed.  

On layer 2, the phasification of input variables is carried out in the form of three parameterised 

terms      1312111 xxxX ++=  and      2322212 xxxX ++= , and the phasification of output variable of 

five parameterised terms:          54321 yyyyyY ++++= . 

In layer 3, the calculation of b parameters of the fuzzy relationship matrix is carried out. 

On the 4th layer the output parameters iy  of the fuzzy relation matrix are calculated. 

In Layer 5 of the ANFIS structure, the terms of the output variable are truncated based on the 

fuzzy rules, thereby determining the height of the membership function (MF). 

In Layer 6 of the ANFIS structure, the weighting coefficients w of the neural network are formed 

by calculating the areas of the truncated terms of the output variable. 

In Layer 7 of the ANFIS structure, the total area of the figure is calculated by summing the areas 

of the truncated terms of the output variable. 

In Layer 8 of the ANFIS structure, the ratio of the total area to the area of the truncated terms of 

the output variable is calculated. 

At the final layer (Layer 9) of the ANFIS structure, the neuro-fuzzy inference system is trained 

by minimizing the difference between the target value and the output variable's resulting value. This 

process is known as defuzzification, where the fuzzy output is converted into a crisp, numerical value. 
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Fig. 2. The structure of an adaptive neuro-fuzzy inference system (ANFIS). 

 

The application of the soft arithmetic operations method in the training process has been shown 

to have an advantage over traditional training techniques. 

It is also important to note that the proposed training method for fuzzy systems results in a 

response of the output variable across the entire domain of the input and output parameters. 

Let us define the domain and range of the function within the interval [-1, 1]. In this case, the 

activation function has a fuzzy symmetric form about the origin and can be represented using a piecewise 

linear approximation. Under these conditions, the objective function to be minimized can be expressed 

as follows: 

,)(
1

*


=

−=
N

i

ii yyPF  

where y  and 
*y  - real and desired values of the object output, i  - moment of time.  

In order to investigate the dynamic properties of the steam generator, a number of computational 

experiments were carried out at different values of input influences. The input influences - fuel flow rate 

and cold temperature were varied by 7%, i.e., relative to the nominal one. 

From the analysis of dynamic characteristics, we can conclude that the temperature of the steam 

generator is more sensitive to the change in fuel flow rate than to the change in its temperature. Thus, 

we choose fuel flow rate as the main controlling influence on the steam generator temperature regime.  

The studies of this automatic control system have revealed that in the presence of external 

disturbances, such as a temperature change exceeding 15%, or parametric variations in the control object, 

like a 10% temperature change, the quality indicators of the transient response deteriorate significantly. 

In these situations of parameter changes, the control system can potentially enter an unstable state. This 

issue arises because in automatic control systems with fixed controller parameter values, the quality of 

the transient response varies depending on the disturbances and operating modes of the steam generator. 

The fixed controller parameters are not able to adequately compensate for the effects of these 

perturbations, leading to a degradation in the transient performance and potentially destabilizing the 

system. In other words, the control system with static controller parameters is not able to maintain the 

desired transient response characteristics when faced with external disturbances or internal parameter 
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variations in the plant. This limitation of fixed-parameter control necessitates the need for a more 

adaptive, flexible control approach that can adjust to changing conditions and maintain stable, high-

quality control. 

The problem to be addressed is two-fold: to stabilize the controlled variable (steam generator 

temperature) with a desired level of transient response quality, despite having incomplete information 

about the control object; to obtain the properties of disturbance rejection and invariance to external 

perturbations in the automatic control system. In other words, the goal is to achieve stable control of the 

temperature variable while meeting the specified transient response requirements, even when the full 

details of the control plant are not known, and to ensure the control system is robust against external 

disturbances. 

In this case, the control objective is to maintain the process parameter (steam generator 

temperature) within a specified range of deviations from the desired value, even in the presence of both 

controlled and uncontrolled disturbances. The key idea is that as the deviation of the process parameter 

from the target value increases, the increment that adjusts the controller's transfer coefficient should also 

become larger. 

 
Fig. 3. Simulation model of adaptively fuzzy control system of steam generator temperature control. 

 

Based on these considerations, a simulation model of the fuzzy-based steam generator 

temperature control system was constructed in the MATLAB environment, as illustrated in Fig. 3. Using 

this model, a number of computational experiments were conducted in the presence of external 

disturbances and parametric uncertainties. 

As a reference model, the transfer function corresponding to the actual state of the process will 

be utilized: 

.
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The computational experiment conducted in the Simulink MATLAB environment involved 

considering a step-like change in the temperature of the external environment (load), as depicted in Fig. 

4. 

The experimental results indicated that the optimal adaptation coefficient value is 65,0=y . Fig. 

5 presents a comparison of the performance between the adaptive-fuzzy system with a reference model 

using a constant adaptation coefficient (shown by the dashed line) and the adaptive system with a 

reference model that has a variable adaptation coefficient controlled by a trained artificial neural network 

(ANN). Additionally, Fig. 6 depicts the graph showing the variation of the adaptation coefficient ( y ) 

over the course of the transient process. This figure illustrates how the variable adaptation coefficient, 
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as determined by the ANN, evolves dynamically during the transient response, in contrast to the fixed 

adaptation coefficient used in the first case. The comparison between the two approaches, as 

demonstrated by the results in Fig. 5 and 6, highlights the advantages of employing the variable 

adaptation coefficient controlled by the ANN reference model. This implementation leads to improved 

transient performance and enhanced control system stability compared to the fixed adaptation coefficient 

approach. 

 

 
Fig. 4. Deviation from nominal temperature conditions. 

 

 
Fig. 5. Comparative transient response plots of the adaptive control system with a reference model: constant vs. variable 

adaptation coefficient. 

 

The obtained law of change of the adaptation coefficient is close to the relay law, which realises 

high speed of transients. Adaptive systems with a reference model are a widely used tool to improve the 

performance of control systems under uncertainty.  

 
Fig. 6. Control signals during adaptation with constant and variable adaptation rate coefficient. 
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The paper considers the modification of the adaptive-fuzzy system by incorporating a reference 

model. This implementation is achieved through a nonlinear control law that adjusts the adaptation rate 

coefficient y . The uniqueness of this approach lies in the fact that the parameters of the hidden layer 

activation functions and output layer weights in the adaptive-fuzzy system are made tunable. The 

experimental results demonstrate that controlling the adaptation rate coefficient of the adaptive-fuzzy 

system using a reference model implemented with a neural network leads to a significant improvement 

in the transient response quality. In other words, the incorporation of the reference model and the ability 

to tune the internal parameters of the adaptive-fuzzy system result in enhanced dynamic performance 

and faster convergence to the desired temperature control behavior, as evidenced by the improved 

transient characteristics. 

The results of the computational experiments demonstrate that the developed controller endows 

the entire automatic control system with the ability to maintain the desired level of the technological 

parameter (temperature) even in the presence of external disturbances. Furthermore, the controller 

enables qualitative control of the temperature control process over a wide range of changes in its 

parameters over time. As shown in Fig. 6, the developed fuzzy controller confers the properties of 

parameter perturbation invariance to the overall control system. In other words, the control system 

exhibits robust performance and is able to effectively maintain the target temperature despite variations 

in the system parameters. The key takeaway is that the developed fuzzy controller, as part of the 

adaptive-fuzzy control system, provides the capability to reliably regulate the temperature, ensuring 

stability and consistency of the technological process, even in the face of disturbances and changes in 

the system's operating conditions. 

 

Conclusion 

This paper investigates the modeling and synthesis of an adaptive-fuzzy control system for steam 

generator temperature control. The aim was to develop a control system capable of providing high 

accuracy and stability of steam generator temperature control under diverse operating conditions. The 

paper proposes a synthesized system combining fuzzy logic and adaptation techniques to achieve more 

accurate and stable control of steam generator temperature. The detailed structural diagram of the system 

and the modeling and tuning methods are presented. The results of this study can be applied to enhance 

the efficiency and reliability of temperature control in steam generators across various industries such 

as power generation, chemicals, and manufacturing. Additionally, the paper reviews several key works 

on modeling and synthesis of adaptive-fuzzy temperature control systems for steam generators. The 

findings of these studies confirm the effectiveness and benefits of adaptive and fuzzy approaches in 

improving temperature control. 

In summary, the development and application of a synthesized adaptive-fuzzy control system for 

steam generator temperature control has substantial practical significance. This approach can lead to 

improved control accuracy, stability, and efficiency over a wide range of operating conditions compared 

to conventional control methods. The key advantages of this synthesized system include: enhanced 

control performance through the integration of fuzzy logic and adaptive techniques; ability to handle the 

complex, nonlinear, and uncertain nature of steam generator systems; automatic adjustment of control 

parameters to cope with changing operating conditions; improved overall temperature control accuracy, 

stability, and responsiveness; further research and advancements in this area can make additional 

valuable contributions to the development of advanced control systems and the improvement of steam 

generator performance across various industrial applications, such as power generation, chemicals, and 

manufacturing. 
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