•  
  •  
 

Abstract

Innovative technologies for refining vegetable oils are presented, as well as the qualitative characteristics of raw vegetable oils obtained by extraction and mechanical methods. A general review of the chemical composition and impurities of vegetable oils resulting from the reaction between glycerol and fatty acids is carried out, and a brief review of the study to determine the effect of refining on biologically active components.

The analytical review is devoted to a comparative comparison of two types of refining - chemical and physical refining.

First Page

05

Last Page

18

References

  1. Brahmi, F., Haddad, S., Bouamara, K. et al. (2020). Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus indica (L.) mill. and Argania spinosa L. skeels. Industrial Crops and Products, 151, 112456.
  2. Vidrih, R., Vidakoviˇc. S., Abramovic, H. (2010). Biochemical parameters and oxidative resistance to thermal treatment of refined and unrefined vegetable edible oils. Czech Journal of Food Sciences, 28(5), 376-384.
  3. Ying, Q., Rudzinska, M., Grygier, A., Przybylski, R. (2020). Determination of triacylglycerols by HTGC-FID as a sensitive tool for the identification of rapeseed and olive oil adulteration. Molecules, 25(17), 38-81.
  4. Gnanaprakasam, A., Sivakumar, V.M., Surendhar, A., Irumarimurugan, M., Kannadasan, T. (2013). Recent strategy of biodiesel production from waste cooking oil and process influencing parameters: a review. Journal of Energy, 2013, 926392, 10 p.
  5. Gharby, S., Guillaume, D., Elibrahimi, M., Charrouf, Z. (2021). Physico-chemical properties and sensory analysis of deodorized argan oil. ACS Food Science & Technology, 1(2), 275-281.
  6. Chew, S.C., Tan, C.P., Long, K., Nyam, K.-L. (2016). Effect of chemical refining on the quality of kenaf (Hibiscus cannabinus) seed oil. Industrial Crops and Products, 89, 59-65.
  7. Gharby, S., Harhar, H., Mamouni, R., Matthaus, B., Ait, E.H. Addi and Charrouf, Z. (2016). Chemical characterization and kinetic parameter determination under rancimat test conditions of four monovarietal virgin olive oils grown in Morocco. Ocl, 23(4), A401 p.
  8. Aliyar-Zanjani, N., Piravi-Vanak, Z., Ghavami, M. (2019). Study on the effect of activated carbon with bleaching earth on the reduction of polycyclic aromatic hydrocarbons (PAHs) in bleached soybean oil. Grasas y Aceites, 70(2), 304 p.
  9. Lamas, D.L., Constenla, D.T., Raab, D. (2016). Effect of degumming process on physicochemical properties of sunflower oil. Biocatalysis and Agricultural Biotechnology, 6, 138-143.
  10. Chew, S.C., Nyam, K.L. (2020). Refining of edible oils. Lipids and Edible Oils, 213-241.
  11. Evrard, J., Pages-Xatart-Pares, X., Argenson, C., Morin, O. (2007). Procedes d’obtention et compositions nutritionnelles des huiles de tournesol, olive et colza. Cahiers de Nutrition et de Dietetique, 42.
  12. Sanchez-Arevalo, C.M., Olmo-Garcıa, L., Fernandez- Sanchez, J.F., Carrasco-Pancorbo, A. (2020). Polycyclic aromatic hydrocarbons in edible oils: an overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3528-3573.
  13. Zio, S., Cisse, H., Zongo, O.et al. (2020). The oils refining process and contaminants in edible oils: a review. Journal of Food Technology Research, 7(1), 9-47.
  14. Chew, S.C., Tan, C.P., Nyam, K.L. (2017). Application of response surface methodology for optimizing the deodorization parameters in chemical refining of kenaf seed oil. Separation and Purification Technology, 184, 144-151.
  15. Lacoste, F. (2014). Undesirable substances in vegetable oils: anything to declare?. Ocl, 21(1), A103-A109.
  16. Bonwick, G.A., Birch, C.S. (2019). European regulation of process contaminants in food in Mitigating Contamination from Food Processing, Royal Society of Chemistry,1-16.
  17. Programme Mixte FAO/OMS Sur Les Normes Alimentaires, Commission Du Codex Alimentarius. Quarante-Deuxi`eme Session, CICG, Geneva, Switzerland, 2019.
  18. Lucci, P., Bertoz, V., Pacetti, D., Moret, S., Conte, L. (2020). Effect of the refining process on total hydroxytyrosol, tyrosol, and tocopherol contents of olive oil. Foods, 9(3), 292-311.
  19. Arris, F.A., Manan, W.N., Sajab, M.S. (2020). A revisit to the formation and mitigation of 3-chloropropane1, 2-diol in palm oil production. Foods, 9(12), 1769 p.
  20. Harhar, H., Gharby, S., Kartah, B., Pioch, D., Guillaume, D., Charrouf, Z. (2014). Effect of harvest date of Argania spinosa fruits on Argan oil quality. Industrial Crops and Products, 56, 156-159.
  21. Fang, B., Zhang, M., Shen, Y.M. (2017). Importance of the higher retention of tocopherols and sterols for the oxidative stability of soybean and rapeseed oils. Journal of Food Science & Technology, 54(7), 1938-1944.
  22. Verhe, R., Verleyen, T., Van Hoed, V., De Greyt, W. (2006). Influence of refining of vegetable oils on minor components. Journal of Oil Palm Research, 4, 168-179.
  23. Ghazani, S.M., Marangoni, A.G.G. (2013). Minor components in canola oil and effects of refining on these constituents: a review. Journal of the American Oil Chemists Society, 90(7), 923-932.
  24. Gotor, A.A., Rhazi, L. (2016). Effects of refining process on sunflower oil minor components: a review. OCL, 23(2), D207 p.
  25. Chew, S.C., Ali, M.A. (2021). Recent advances in ultrasound technology applications of vegetable oil refining. Trends in Food Science & Technology, 116, 468-479.
  26. Vaisali, C., Charanyaa, S., Belur, P.D., Regupathi, I. (2014). Refining of edible oils: a critical appraisal of current and potential technologies. International Journal of Food Science and Technology, 50(1), 13-23.
  27. Ortega-Garcıa, J., Gamez-Meza, N., Noriega-Rodriguezet, J.A. al. (2006). Refining of high oleic safflower oil: effect on the sterols and tocopherols content. European Food Research and Technology, 223(6), 775-779.
  28. Gharby, S., Hajib, A., Ibourki, M. et al. (2021). Induced changes in olive oil subjected to various chemical refining steps: a comparative study of quality indices, fatty acids, bioactive minor components, and oxidation stability kinetic parameters. Chemical Data Collections, 33, 100702.
  29. Manjula, S., Subramanian, R. (2006). Membrane technology in degumming, dewaxing, deacidifying, and decolorizing edible oils. Critical Reviews in Food Science and Nutrition, 46(7), 569-592.
  30. Tasan, M., Demirci, M. (2005). Total and individual tocopherol contents of sunflower oil at different steps of refining. European Food Research and Technology, 220(3-4), 251-254.
  31. Hussain Sherazi, S.T., Mahesar, S.A., Sirajuddin, A. (2016). Vegetable oil deodorizer distillate: a rich source of the natural bioactive components. Journal of Oleo Science, 65(12), 957-966.
  32. Dumont, M.J., Narine, S.S. (2007). Soapstock and deodorizer distillates from North American vegetable oils: review on their characterization, extraction and utilization. Food Research International, 40(8), 957-974.
  33. Delgado, A., Al-Hamimi, S., Ramadan, M.F. et al. (2020). Contribution of tocols to food sensorial properties, stability, and overall quality. Journal of Food Quality, 2020, 8885865, 8 p.
  34. Giriprasad, H.S.R., Goswami, M. (2013). Animal fat-processing and its quality control. Journal of Food Processing & Technology, 4(8).
  35. Van Nieuwenhuyzen, W., Tomas, M.C. (2008). Update on vegetable lecithin and phospholipid technologies. European Journal of Lipid Science and Technology, 110(5), 472-486.
  36. Dijkstra, A.J. (2017). About water degumming and the hydration of non-hydratable phosphatides. European Journal of Lipid Science and Technology, 119(9), 1600496-1600511.
  37. Wibisono, Y., Nugroho, W.A., Chung, T.W. (2014). Dry degumming of corn-oil for biodiesel using a tubular ceramic membrane. Procedia Chemistry, 9, 210-219.
  38. Zufarov, O., Schmidt, S., Sekretar, S. (2008). Degumming of rapeseed and sunflower oils. Acta Chimica Slovaca, 1(1), 321-328.
  39. De, B.K., Patel, J.D. (2010). Effect of different degumming processes and some nontraditional neutralizing agent on refining of RBO. Journal of Oleo Science, 59(3), 121-125.
  40. Issaoui, M., Delgado, A.M. (2019). Grading, labeling and standardization of edible oils. in Fruit Oils’: Chemistry and Functionality, M. F. Ramadan, Ed., Springer, Cham, Switzerland.
  41. Clausen, K. 2001. Enzymatic oil-degumming by a novel microbial phospholipase. European Journal of Lipid Science and Technology, 103(6), 333-340.
  42. Dijkstra, A.J. (2010). Enzymatic degumming. European Journal of Lipid Science and Technology, 112(11), 1178-1189.
  43. Yang, J.G., Wang, Y.-H., Yang, B., Mainda, G., Guol, Y. (2006). Degumming of vegetable oil by a new microbial lipase. Food Technology and Biotechnology, 44(1), 101-104.
  44. Sadeghi, M. (2010). Purification of soybean oil with phospholipase Al. Aeoretical and Experimental Chemistry, 46(2), 132-137.
  45. Sampaio, K.A., Zyaykina, N., Wozniak, B., Tsukamoto, J., Greyt, W.D., Stevens, C.V. (2015). Enzymatic degumming: degumming efficiency versus yield increase. European Journal of Lipid Science and Technology, 117(1), 81-86.
  46. Yang, B., Zhou, R., Yang, J.G., Wang, Y.H., Wang, W.F. (2008). Insight into the enzymatic degumming process of soybean oil. Journal of the American Oil Chemists Society, 85(5), 421-425.
  47. Jiang, X., Chang, M., Wang, X., Jin, Q., Wang, X. (2014). The effect of ultrasound on enzymatic degumming process of rapeseed oil by the use of phospholipase A1. Ultrasonics Sonochemistry, 21(1), 142-148.
  48. Gharby, S., Harhar, H., Farssi, M., Ait Taleb, A., Guillaume, D., Laknifli, A. (2018). Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. Ocl, 25(3), A303 p.
  49. Essid, K., Chtourou, M., Trabelsi, M., Frikha, M.H. (2009). Influence of the neutralization step on the oxidative and thermal stability of acid olive oil. Journal of Oleo Science, 58(7), 339-346.
  50. Gertz, C., Parkash Kochhar, S. (2001). A new method to determine oxidative stability of vegetable fats and oils at simulated frying temperature. Oleagineux, Corps Gras, Lipides, 8(1), 82-88.
  51. Ruiz-Mendez, M.V., Marquez-Ruiz, G., Dobarganes, M.C. (1997). Relationships between quality of crude and refined edible oils based on quantitation of minor glyceridic compounds. Food Chemistry, 60(4), 549-554.
  52. Patel, V.R., Dumancas, G.G., Kasi Viswanath, L.C., Maples, R., Subong, B.J. (2016). Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights, 9, 1-12.
  53. Piloto-Rodrıguez, V.S., Melo1, E.A., Goyos-Perez, L. (2014). Conversion of by-products from the vegetable oil industry into biodiesel and its use in internal combustion engines: a review. Brazilian Journal of Chemical Engineering, 31, 287-301.
  54. Pereda Mar´ın, J., BarrigaMateos, F., Mateo, P.A. (2003). Aprovechamiento de las oleinasresidualesprocedentes del proceso de refinadode los aceitesvegetales comestibles, para la fabricacion de biodiesel. Grasas y Aceites, 54(2), 130-137.
  55. Luxem F.J. (2008). Biocatalysis and bioenergy. in Biodiesel from Acidulated Soapstock (Acid Oil), T. H. Ching and S. JeiFu, Eds., John Wiley, Hoboken, NJ, USA.
  56. Haslenda, H., Jamaludin, M.Z. (2011). Industry to Industry Byproducts Exchange Network towards zero waste in palm oil refining processes. Resources, Conservation and Recycling, 55(7), 713-718.
  57. Monte, M.L., Pohndorf, R.S., Crexi, V.T., Pinto, L.A.A. (2015). Bleaching with blends of bleaching earth and activated carbon reduces color and oxidation products of carp oil. European Journal of Lipid Science and Technology, 117(6), 829-836.
  58. Liu, Y., Huang, J., Wang, X. (2008). Adsorption isotherms for bleaching soybean oil with activated attapulgite. Journal of the American Oil Chemists Society, 85(10), 979-984.
  59. Zschau, W. (2001). Bleaching of edible fats and oils. European Journal of Lipid Science and Technology, 103(8), 505-551.
  60. Sabah, E., Çinar, M., Çelik, M.S. (2007). Decolorization of vegetable oils: adsorption mechanism of β-carotene on acidactivated sepiolite. Food Chemistry, 100(4), 1661-1668.
  61. Amari, A., Gannouni, H., Khan, M., Almesfer, M., Elkhaleefa, A., Gannouni, A. (2018). Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Applied Sciences, 8(11), 2302-2311.
  62. Usman, M.A., Ekwueme, V.I., Alaje, T.O., Mohammed, A.O. (2012). Characterization, acid activation, and bleaching performance of ibeshe clay, lagos, Nigeria. ISRN Ceramics, 2012, 658508, 5 p.
  63. Javed, S.H., Zahir, A., Khan, A., Afzal, S., Mansha, M. (2018). Adsorption of mordant red 73 dye on acid activated bentonite: kinetics and thermodynamic study. Journal of Molecular Liquids, 254, 398-405.
  64. Gong, Z., Alef, K., Wilke, B.M., Li, P. (2007). Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. Journal of Hazardous Materials, 143(1-2), 372-378.
  65. Ma, Y., Shi, L., Liu, Y., Lu, Q. (2017). Effects of neutralization, decoloration, and deodorization on polycyclic aromatic hydrocarbons during laboratory-scale oil refining process. Journal of Chemistry, 2017, 7824761, 9 p.
  66. Amzad, Hossain M., Salehuddin, S.M. (2012). Polycyclic aromatic hydrocarbons (PAHs) in edible oils by gas chromatography coupled with mass spectroscopy. Arabian Journal of Chemistry, 5(3), 391-396.
  67. Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S., Ruangviriyachai, C. (2011). Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chemical Engineering Research and Design, 89(3), 335-340.
  68. Vargas, J.E., Gutierrez, L.G., Moreno-Pirajan, J.C. (2010). Preparation of activated carbons from seeds of Mucuna mutisiana by physical activation with steam. Journal of Analytical and Applied Pyrolysis, 89(2), 307-312.
  69. Mohamed, A.R.. Mohammadi, M., Darzi, G.N. (2010). Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renewable and Sustainable Energy Reviews, 14(6), 1591-1599.
  70. Omar, S., Girgis, B., Taha, F. (2003). Carbonaceous materials from seed hulls for bleaching of vegetable oils. Food Research International, 36(1), 11-17.
  71. Siragakis, G., Antonopoulos, K., Valet, N., Spiratos, D. (2006). Olive oil and pomace olive oil processing. Grasas y Aceites, 57(1), 56-67.
  72. Stauff, A., Schnapka, J., Heckel, F., Matissek, R. (2020). Mineral oil hydrocarbons (MOSH/MOAH) in edible oils and possible minimization by deodorization through the example of cocoa butter. European Journal of Lipid Science and Technology, 122(7), 1900383.
  73. Hafidi, A., Pioch, D., Ajana, H. (2005). Membrane-based simultaneous degumming and deacidification of vegetable oils. Innovative Food Science & Emerging Technologies, 6(2), 203-212.
  74. Cheng, Z., Liu, G., Wang, L. (2017). Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Comprehensive Reviews in Food Science and Food Safety, 16(2), 3-281.
  75. Di Giovacchino, L., Mucciarella, M.R., Costantini, N., Ferrante, M.L., Surricchio, G. (2002). Use of nitrogen to improve stability of virgin olive oil during storage. Journal of the American Oil Chemists Society, 79(4), 339-344.
  76. Silva, S.M., Sampaio, K.A., Ceriani, R. et al. (2014). Effect of type of bleaching earth on the final color of refined palm oil. Lebensmittel-Wissenschaft und -Technologie Food Science and Technology, 59(2), 1258-1264.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.