•  
  •  
 

Abstract

The use of Industry 4.0 technologies in modern production serves to increase production efficiency. Robots and robotic complexes with innovative intelligent control are widely used in industrial production. However, studying their mechanical part, linear motion mechatronic modules and control system is a complex object. The variety and complexity of control methods and operating modes negatively affects the operator's working time and production productivity. In such cases, it is necessary to improve control methods and develop technologies used in industry, including robots and robotic manipulators, which allow to perform short movements with high accuracy and speed. In the article, the mathematical model, control method and modes of the "Efort collaboration robot 5" type industrial robot built on the basis of linear motion mechatronic modules are developed. Among the control methods, positional control and contour mode control methods were considered. Based on the mentioned mathematical model, the methods of controlling the speed of the robot manipulator in the positional control mode, and high-precision implementation of the work speed in the contour control mode have been developed. Also, a functional scheme of the ECR 5-type industrial robot built on the basis of linear motion mechatronic modules based on positional coordinates is proposed, which allows high-accuracy execution of movements at different accelerations and different operating modes and calculation of technical parameters of the robot.

First Page

37

Last Page

42

References

  1. Glazunov, V.A. (2018). Novye mehanizmy v sovremennoj robototehnike [New mechanisms in modern robotics]. M.: Tehnosfera, 316 p. (in Russian).
  2. Nazarov, Kh. N. (2019). Intellektualnye mnogokoordinatnye mehatronnye moduli robototehnichesih sistem [Intelligent multi-coordinate mechatronic modules of robotic systems]. Toshkent: Mashhur-Press, 143 p. (in Russian).
  3. Afonin, A.A. (1986). Jelektromagnitnyj privod robototehnicheskih system [Electromagnetic drive of robotic systems]. Kiev: Nauk, 272 p. (in Russian).
  4. Krutko, P.D. (1991). Upravlenie ispolnitel'nymi sistemami robotov [Control of robot executive systems]. M.: Nauka, 281 p. (in Russian).
  5. Kurbatov, P.A. (2007). Matematicheskie modelirovanie jelektromehanicheskih sistem jelektricheskih apparatov [Mathematical modeling of the electromechanical system of electrical devices]. M.: Izd. Dom MJeI, 110 p. (in Russian).
  6. Gotlib, B.M. (2007). Proektirovanie mehatronnyh sistem. Ch1. Informacionnoe obespechenie processa proektirovanija mehatronnyh sistem [Design of mechatronic systems. Ch1. Information support for the process of designing mechatronic systems]. Ekaterinburg: UrGUPS, 115 p. (in Russian).
  7. Goncharov, V.I., Peters, D.P., Vadutov,a F.A. (2207). Proektirovanie ispolnitel'nyh sistem robotov [Designing an executive system of robots]. Tomsk: Izd-vo TPU, 96 p. (in Russian).
  8. Lipatov, D.N. (1984). Voprosy i zadachi po jelektrotehnike dlja programmirovannogo obuchenija [Questions and tasks in electrical engineering for software training]. M.: Jener-goatomizdat, 360 p. (in Russian).
  9. Kazakov, L.A. (1991). Elektromagnitnyy ustroystva RAA: Spravochnik [Electromagnetic devices of the RAA: Reference]. M.: Radio i svyaz, 352 p. (in Russian).
  10. Arczewski, K., Pietrucha, J. (1993). Mathematical Modelling of Complex Mechanical Systems, Ellis Horwood. New York.
  11. Medvedov, V.S., Leskov, A.G., Jushhenko, A.S. (1978). Sistemy upravlenija manipuljacionnyh robotov [Control systems for manipulative robots]. M.: Nuka, 416 p. (in Russian).
  12. Rakhmiov, T.O. (2023). Avtomatik boshqarish tizimlari uchun chiziqli izjro elementlari asosidagi mexatron modullar. Toshkent: ZEBO-PRINT, 124 p.
  13. Egorov, I.N. (2010). Pozicionno-silovoe upravlenie robototehnicheskimi i mehatronnymi ustrojstvami [Positional power control of robotic and mechatronic devices]. Izd-vo Vladim. gos. un-ta, 192 p. (in Russian).
  14. Afanas'ev, V.N., Bukreev, V.G., Zajcev, A.P., Stepanov, V.P., Titov, V.S. (1987). Jelektroprivody promyshlennyh robotov s adaptivnym upravleniem [Electric drives of industrial robots with adaptive control]. Tomsk: izd-vo Tom. un-ta, 165 p. (in Russian).
  15. Nazarov, Kh. N., Rakhimov, T.O. (2020). The concept of the mathematical description of the multi-coordinate mechatronic module of the robot. Acta of Turin Polytechnic University in Tashkent, 15-20.
  16. Yusupbekov, A. N., Nazarov, Kh. N., Matyokubov, N.R., Rakhimov, T.O. (2020). Conceptual bases of modeling multi-cordinate mechatronic robot modules. Сhemical technology control and management, 4(94), 10-15.
  17. Shahvorostov, S.A. (2016). Roboty v sistemah avtomatizacii [Work in automation systems]. Krasnojarsk: Nauchno-innovacionnyj centr, 110 p. doi: 10.12731/asu.madi.ru/RSA.2016.110. (in Russian).
  18. Nazarov, Kh.N., Rakhimov, T.O. (2019). Mathematical models of multi-coordinate electromechatronic systems of intellectual robots. Electronic journal of actual problems of modern science, education and training.
  19. Nazarov, Kh.N, Rakhimov, T.O. (2020). The synthesis method formal description for the physical principles of operation of robotic systems mechatronic modules. Scientific-technical journal, 24(6), 3.
  20. Siddikov, I.KH., Rakhimov, T.O. (2023). Raqamli boshqaruvli ehlektromagnit mekhatron modulining matematik modeli. International scientific-practical conference on the theme: “Information Technology, Networks And Telecommunications Itn&T-2023” Section 2, 238-241.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.