Abstract
A model of parametric optimization with fuzzy initial information is constructed. The conditions and areas of application of the main methods of the theory of fuzzy sets in studies of parametric optimization are determined. A connection is established between the stability of parametric optimization problems and fuzzy optimization problems. An algorithm for solving problems by the method of parametric programming is developed for fuzzy given initial information. The admissible region of the parametric programming problem and the value of its objective function at each point of this region depend on the parameter t. A description of the method for solving the parametric programming problem begins with a description of the reduction of the fuzzy medium to a clear medium and the method of finding the value of t for which there is an optimal fuzzy solution.
First Page
56
Last Page
61
References
- L.Zadeh “Fuzzy logic, Neural networks, and Soft Computing” Communications of the ACM, vol. 37, no. 3, 1994.
- L.A.Zade, “Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblijenny'h resheniy” [The concept of a linguistic variable and its application to approximate decision making], Moskva: Mir, 1976, 165 p. (in Russian).
- V.YU.Zabrodin, “O kriteriyah estestvennoy klassifikacii” [The criteria of natural classification], NTI, no.8, ser.2, 1981. (in Russian).
- E.E.Vityaev, “Klassifikaciya kak vy'delenie grupp ob`ektov, udovletvoryayusch'ih razny'm mnojestvam soglasovanny'h zakonomernostey” [Classification as a division of groups of objects that meet different opinions of consistent patterns], Analiz raznotipny'h danny'h , Novosibirsk, 1983, pp. 44-50. (in Russian).
- S.D.SHtovba, “Vvedenie v teoriyu nechetkih mnojestv i nechetkuyu logiku” [Introduction to fuzzy set theory and fuzzy logic], http//www.matlab.exponenta.ru. (in Russian).
- R.A.Aliev, R.A.Aliev, “Teoriya intellektual'ny'h sistem i ee primenenie” [Theory of intelligent systems and their application], Baku: CHashy'ogly', 2001, 720 p. (in Russian).
- A.P.Rotshteyn, “Intellektual'ny'e tehnologii identifikacii: nechetkaya logika, geneticheskie algoritmy', neyronny'e seti” [Intelligent identification technologies: odd logic, genetic algorithms, neural networks], Vinnica: UNIVERSUM, 1999, 320 p. (in Russian).
- D.Rutkovskaya, M.Pilin'skiy, L.Rutkovskiy, “Neyronny'e seti, geneticheskie algoritmy' i nechetkie sistemy'”, [Neural networks, genetic algorithms, and odd systems], Moskva: Goryachaya liniya, Telekom, 2006. (in Russian).
- A.S.Katasev, CH.F.Ahatova, “Neyronechetkaya model' formirovaniya baz znaniy e`kspertny'h sistem s geneticheskim algoritmom obucheniya” [Neuro fuzzy model of knowledge base formation in equalizer systems with a genetic learning algorithm], Problemy' upravleniya i modelirovaniya v slojny'h sistemah: tr. XII Mejdunar. konf. Samar. nauch. centr RAN, 2010, pp. 615-621. (in Russian).
- Т.F.Bekmuratov, D.Т.Мukhamedieva, “Decision-making problem in poorly formalized processes” Proc. of the 5th World conf. on intelligent systems for industrial automation, b - Quadrat Verlag. Tashkent, Novemder 25−27, 2008, pp. 214−218.
- T.F.Bekmuratov, D.T.Mukhamedieva, “A training algorithm of fuzzy inference system” International scientific and technical journal “Chemical technology. Control and management., № 3-4” and “Journal of Korea multmedia society” South Korea, Seoul – Uzbekistan, Tashkent, 2015, pp.108-114.
- T.F.Bekmuratov, D.T.Muhamediyeva, X.A.Primova, N.A.Niyozmatova, “Assessment of weakly formalized process based on the fuzzy integral” Proceedings of eighth International Conference on Soft Computing, Computing with Words and Perceptions in system Analysis, Decision ICSCCW-2015, Antalya, 2015, pp. 391-397.
- D.T.Muhamedieva, H.A.Primova, N.A.Niezmatova, “Podhody' k ispol'zovaniyu Z-ocenivaniya neopredelennosti v sistemah nechetkogo vy'voda” [Methods for using z-estimation of uncertainty in fuzzy inference systems], Problemy' vy'chislitel'noy i prikladnoy matematiki, no. 2(2), pp. 85-90, 2015. (in Russian).
- T.F.Bekmuratov, D.T.Muhamedieva, “E`ksperimental'ny'e issledovaniya shodimosti geneticheskih algoritmov k global'nomu optimum”, [Experimental study of the far Eastern region of the convergence of genetic algorithms to the municipal global optimum], DAN RUz, vol. 5, pp. 14-18, 2015. (in Russian).
- D.T.Muhamedieva, “Reshenie zadach mnogokriterial'noy optimizacii pri nalichii neopredelennosti nestaticheskogo haraktera” [Solving a multi-criteria optimization problem in the presence of non-static uncertainty] Aktual'ny'e problemy' sovremennoy nauki, no. 2, pp. 237-239, 2013. (in Russian).
- D.T.Muhamedieva, “Algoritm klasterizacii pravil sistem nechetkogo vy'voda” [Algorithm for classification of fuzzy inference system rules], Estestvenny'e i tehnicheskie nauki, no. 2, pp. 248-252, 2013. (in Russian).
Recommended Citation
Muhamediyeva, Dilnoz Tulkunovna
(2020)
"RESEARCH PROPERTIES OF SOLVING PROBLEMS OF PARAMETRIC OPTIMIZATION,"
Chemical Technology, Control and Management: Vol. 2020:
Iss.
2, Article 9.
DOI: https://doi.org/10.34920/2020.2.56-61
Included in
Complex Fluids Commons, Controls and Control Theory Commons, Industrial Technology Commons, Process Control and Systems Commons