•  
  •  
 

Abstract

The article presents the general principles of construction of contactless ferromagnetic converters of large direct currents, the main requirements for them, and the results of the development of one of the developed wide-range magnetomodulation contactless converters of control and control systems concerning large electric power facilities. The developed converter, unlike the known ones, have a wide range of controlled currents, increased accuracy and sensitivity, a technological design, and small weight and dimensions at low material consumption and cost. The errors of contactless wide-range magnetomodulation converters from the influence of currents of neighboring buses connected by and the opposite direction are considered. The conducted studies have shown that the error from the values of the voltages of neighboring busbars with currents when changing the number of measurement points in a split magnetic circuit changes slightly if the number of measurement points exceeds twelve.

The developed magnetomodulating contactless converter can be widely used in monitoring and control systems in water supply, land reclamation, and irrigation, industry, railway transport, metallurgy, science, technology, as well as for checking electric meters at the place of their installation for contactless monitoring of direct and alternating currents.

First Page

32

Last Page

38

References

  1. M.K.Kazakov, “Methods and means for measuring high voltages and high currents in electric power engineering”. Dis. doc. those. sciences. - Ulyanovsk, 1998. 32 p.
  2. A.M.Plakhtiev, “Effective informational contactless converters for modern monitoring and control systems in the agro-industrial complex”. International Scientific and Practical Conference. “Agricultural science for agriculture”. Barnaul, 2017. pp. 37-39.
  3. N.G.Semenko, Yu.A.Gamazov, Measuring transducers of large electric currents and their metrological support. Moskva: Publishing house of standards, 1984, 132 p.
  4. V.A.Andreev, Relay protection and automation of power supply systems. Moskva: Higher school, 1991, 496 p.
  5. N.R.Yusupbekov, H.Z.Igamberdiev, Sh.M.Gulyamov, F.T.Adilov, “Technologies of automation of industrial processes”. Chemical technology. Control management. 2007, no 1, pp. 50-55.
  6. S.A.Spektor, Measurement of large constant currents. Leningrad: Energy, 1988, 136 p.
  7. O.Bolotin, G.Portnoy, K.Razumovsky, “Primary sensors for energy enterprises”. Energy security and energy saving. 2012, no 5, pp. 28-32.
  8. s. 792152, IPC G01R 19/00. Meter of large direct currents / A. M. Plakhtiev, G.P. Petrov, H. S. Minikeev. Stated 03/11/1979; Publ. 12/30/1980, Bul. 48.
  9. A.Danilov, “Modern industrial current sensors”. Modern electronics. 2004, no 10, pp. 38-43.
  10. E.Uljaev, U.M.Ubaydullaev, Sh.N.Narzullaev, “Optimization of the sizes of the cylindrical measuring transducer”. Chemical Technology, Control and Management. 2020, no 5-6, pp. 29-33. DOI: https://doi.org/10.34920/2020.5-6.29-32.
  11. A.Denmukhammadiev, A.Pardaev, M.Begmatov, A.Mustafoqulov, H.Valikhonova,Physical and electronic model of studying infrared radiator for drying wending insulation”. IOP Conference Series: Materials Science and Engineering. 2021, no 1030 (1).
  12. R.J.Baratov, N.B.Pirmatov, A.T.Panoev, Y.E.Chulliyev, S.A.Ruziyev, A.Mustafoqulov, “Achievement of electric energy savings through controlling frequency convertor in the operation process of asynchronous motors in textile enterprises”. VII International Scientific Conference Integration, Partnership & Innovation in Construction Science & Education, 11-14 th November, 2020, IOP Conference Series: Materials Science and Engineering (MSE).
  13. Ernö Reich, “Elektricky mĕřici přistroj”, Czech Patent № 2145015, MKI 21e3601 dated 15.04.2018.
  14. Zoltan Lanczi, Aramlökest mérö müszer, Hungarian Patent № 2146340, MKI 21e 29-36 dated 30.11.2015.
  15. Borkman D. Hochstrommessungmit Hallgeneratoren. - Elekrie, 1997, Bd. 18, № 2, S. 46-50.
  16. Krämer W. Gleichstrom - Wandlerschaltung hoher Genauigkeitl für p. 65 - 71 wellige Gleichstrom. - ETZ-A, 1996, № 18, p. 28 - 33.
  17. Lappe F. Ein neues Meβgerät für hohe Gleichström - Chemi-Ingenier-Technick, 1998, Bd. 42, № 19, p. 1228-1229.
  18. Yuki TN Electromagnetic noncontacting measuring apparatus, US Patent № 5234844, MKI G01R 27/04, NCI 324 - 58 dated 11/18/2016.
  19. Bardahl Nils, Einrichtung zur Erfassung des Belastungsstromes in Hochstromanlagen, German Patent № 3148654, Cl. 21е36 / 01 dated 28.11.2016.
  20. Eadie EM, Complete specification improvements in multi-range hook-on electrical indication instrument, UK Patent № 3966443, NKI G1U dated 21.12.2015.
  21. Standard Telefones & Cables LTD. Current monitoring circults including hall effect devices, UK Patent № 4575111, MKI G01R 19/165, NCI GIU dated 17.09.2016, № 4773.
  22. Reich, Ernö, Elektricky mĕřici přistroj, Czech Patent № 2145015, MKI 21e3601 dated 15.04.2018.
  23. TOKYO SHIBAURA. Transducers. UK patent № 3036984, MKI G01R 19/22, NCI GIU dated 02.07.2017, № 4968.
  24. Meierovich EA, Andreevskaya LI Dispositif paur la mesurede I'intesite du courant. French patent № 4347944, MKI G01R dated February 24, 2017, № 2.
  25. Djalilov A., Juraeva N., Nazarov O. Intellectual system for water flow and water level control in water management / 1 st International conference on Energetics Civil and Agrucultural Engineering 2020. Tashkent, Uzbekistan. IOP Conf. series: Earth and Environmental Science 614 (2020) 012044.
  26. Reich Ernö, “Elektricky mĕřici přistroj”. Czech Patent no 2145015, MKI 21e3601, 15.04.2018.
  27. Zoltan Lanczi, “Aramlökest mérö müszer”. Hungarian Patent no 2146340, MKI 21e 29-36, 30.11.2015.
  28. Hitachi Ltd., Chiyoda-ku Tokyo 100 (JP). “Magnetoelectrical transducer”. Japan Patent no 3257766, MKI G01D 5/16, 18.08.2017, no 33.
  29. V.N.Brodovsky, B.M. Korzhanov, “Current transformer”. AC 3592239, MPK21e3601, Byul. no 4, 05.01.2017.
  30. Yoshihiro Konno, Masaru Sasaki, “Electric current measure apparatus. Japanese patent MKI G01R, 21.05.2009, CN204154795U.
  31. Chjan Li, “Stripping electrical measuring one meter”. MKI G01R 19, 02.11.2015, CN204154795U.
  32. Michel Lynn, John Shie, “Power amplifier saturation detection”. MKI G01R, 03.05.2019, US10224917B2.
  33. Andreas Jurisch, “Method of measuring current in a conductor in an ac transmission network”. MKI G01R, 03.08.1995, WO19945020765A1.
  34. Horst Knoedgen, Frank Kronmueller, “Highly accurate current measurement”. MKI G01R, 13.02.2019, EP2821799A1.
  35. Rudolf Gati, Markus Abplanalp, “Configuration of magnetoriesistire sensors for current measurement”. MKI G01R, 22.07.2008, ES2591283T3.
  36. Woifgang Grieshaber, Jean-Pierre Dupraz, “Method of opening a bypass switch of a high voltage direct current network”. MKI G01R, 09.21.2011, CA284893OC.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.