•  
  •  
 

Abstract

Currently, in the world in the field of science, engineering and technology, including in mechatronics and robotics, the creation of multi-coordinate mechatronic systems that perform power and control functions is becoming of paramount importance, this is due to a number of important positive qualities of the systems, such as simplicity and compactness of the design, the possibility of obtaining significant efforts, high accuracy and stability of the establishment of fixed positions, ease of control and high reliability. This article presents the calculation of the parameters of multi-position mechatronic modules based on linear execution elements. In the construction of this model, the geometric dimensions of the areas of application of multi-position linear electromagnetic mechatronic modules are deeply analyzed. In addition to the linear motion-based mechatronic modules, the maximum and minimum ambient temperatures, and a number of other quantities, the specifications include, of course, the optimum quality index. In particular, the calculations presented in the article were performed for a specific type of mechatronic module. Based on this, a design scheme of a multi-position mechatronic module is proposed, and calculations are recommended for multi-position electromagnetic mechatronic modules based on this type of linear executive element.

First Page

42

Last Page

48

References

  1. Kh.N.Nazarov, M.M.Abdullaev, N.R.Matyokubov, T.O.Rakhimov, B.B.Yusupov, “Elektromagnitniy lineyniy dvigatel” [Elektromagnitniy lineyniy dvigatel]. Patent RU UZ FAP №01632, 11.05.2021 at. (in. Russian).
  2. A.A.Afonin, V.V.Grebennikov, Lineyniy elektromagnitnix privod raschet ix staticheskix i dinamicheskix xarakteristik [Linear electromagnetic drive calculation of their static and dynamic characteristics]. 55 p. (in. Russian).
  3. O.D.Egorov, Ju.V.Poduraev, Raschet i konstruirovanie mehatronnyh module [Calculation and design of mechatronic modules]. M.: GOU VPO MGTU “Stankin”, 2012, 422 p. (in. Russian).
  4. L.A.Kazakov, “Elektromagnitnyy ustroystva RAA: Spravochnik” [Electromagnetic devices RAA: Reference]. M.: Radio i svyaz, 1991, 352 p. (in. Russian).
  5. K.Arczewski, and J.Pietrucha, “Mathematical Modelling of Complex Mechanical Systems”. Ellis Horwood, New York, 1993.
  6. The Anh Tuan Dang, Magali Bosch-Mauchand, Neha Arora, Christine Prelle, Joanna Daaboul, “Electromagnetic modular Smart Surface architecture and control in a microfactory context”. Computers in Industry. Vol. 81, pp. 152-170, 2016.
  7. Kh.N.Nazarov, N.R.Matyokubov, “Models of multi-ordinary mechatronic models of intellectual robots”. Chemical Technology, Control and Management, Vol. 2018 (2019), Issue 3, Special Issue 4-5, pp. 150-153.
  8. Aleksandr Lutonin, Andrey Shklyarskiy, and Yaroslav Shklyarskiy, “Operation modes and control algorithms of anisotropic permanent magnet synchronous motor (IPMSM)”. E3S Web of Conferences 140, 10006 (2019), https://doi.org/10.1051/e3sconf/201914010006 EECE-2019
  9. Kh.N.Nazarov, T.O.Rakhimov, “Mathematical models of multi-coordinate electromechatronic systems of intellectual robots”. Electronic journal of actual problems of modern science, education and training. pp. 37-46, 2019.
  10. Kh.N.Nazarov, T.O.Rakhimov, “The concept of the mathematical description of the multi-coordinate mechatronic module of the robot”. Acta of Turin Polytechnic University in Tashkent, International scientific and technical journal, pp. 15-21, 2020. https://uzjournals.edu.uz/actattpu/vol10/iss3/3
  11. Justin John Grimm, Electromagnetic Linear Actuator - Design, Manufacture and Control Submitted. 2009, 189 p.
  12. S.E.Lyshevski, Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC Press, Boca Raton, FL, 2000, 203 p.
  13. B.N.Lobov, “Algoritm parametricheskogo sinteza jelektromagnitov” [Algorithm of parametric synthesis of electromagnets]. Izvestija vuzov. Severo-Kavkazskij region. Tehnicheskie nauki. no. 2, pp. 53-58, 2010. (in. Russian).
  14. A.V.Gordon, A.G.Slivinskaja, Jelektromagnity peremennogo toka [Electromagnetic alternating current]. M., 1968, 200 p. (in. Russian).
  15. A.G.Nikitenko i dr., Matematicheskoe modelirovanie i avtomatizacija proektirovanija tjagovyh jelektricheskih apparatov [Mathematical modeling and automation of design of traction electric vehicles]. M., 1995, 610 p. (in. Russian).
  16. E.V.Arhipova, N.V.Russova, G.P.Svincov, “Usovershenstvovannaja metodika proektnogo rascheta bronevyh jelektromagnitov postojannogo naprjazhenija s vnedrjajushhimisja jakorjami” [Improved method of design calculation of DC armoured electromagnets with insertion anchors]. Vestnik Chuvashskogo universiteta, no. 3, pp. 156-161, 2013. (in. Russian).
  17. Ju.S.Korobkov, Raschet jelektromehanicheskih ustrojstv jelektromagnitnogo tipa [Calculation of electromechanical devices of electromagnetic type]. M.: ID MJeI, 2007, 52 p. (in. Russian).
  18. L.A.Kazakov, “Uchet poter' magnitodvizhushhej sily v jelektromagnitah postojannogo toka” [Taking into account the magnetomotive force in a DC electromagnet]. Jelektrotehnika. no. 4, pp. 44-49, 1972. (in. Russian).
  19. A.K.Ter-Akopov, “Analiticheskij metod rascheta dinamiki jelektromagnitov postojannogo toka” [Analytical method for calculating the dynamics of DC electromagnets]. Jelektrichestvo. no. 5, pp. 1-5, 1960. (in. Russian).
  20. G.G.Ugarov, V.N.Fedonin, V.V.Shamaro, “Raschet vtjazhnogo korotkohodovogo jelektromagnita postojannogo toka bez stopa” [Calculation of a retractable short-stroke DC electromagnet without stopping]. Issledovanie jelektricheskih silovyh impul'snyh sistem: Sb. nauch. tr. – Novosibirsk: Nauka, pp. 57-62, 1974. (in. Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.