•  
  •  
 

Abstract

The article substantiates the needs to increase the level of automation of methods and geodetic support of geometric parameters during the construction of buildings and structures. In particular, the method of alignment measurements is considered. This is widely used in determining deviations from the straightness and alignment of the installation of elements in engineering building structures, including hydraulic structures, as well as in the control of process equipment installations, rolling mills, conveyor lines, crane tracks, when monitoring precipitation. and deformations of techno objects. One of the methods of alignment measurements with the use of a visual-optical device – aliniometer and a sighting mark is considered; shortcomings of the instruments used, which are the reason for the low efficiency and effectiveness of the process of alignment measurements, are revealed. A comparative analysis of existing methods and means of gate measurements using various designs of instruments and electro-optical devices was carried out, as a result of which a design of a target mark and an electronic block diagram were developed using a liquid crystal indicator and mobile phones as a means of remote control and transmission of information in the measurement process. , which differs from analogues in small weight and size parameters, low energy consumption and cost, high efficiency and ease of use.

First Page

22

Last Page

29

References

  1. Yambaev, H.K., Goligin N.H. (2005). Geodezicheskoe instrumentovedeniye [Geodetic instruments]. M., 5-32. (in Russian).
  2. Gulyaev, Yu.P. (2008). Prognozirovaniye deformatsiy soorujeniy na osnove rezultatov geodezicheskih nablyudeniy [Prediction of structural deformations based on the results of geodetic observations]. Novosibirsk: SGGA, 255 p. (in Russian).
  3. Yambaev, H.K. (1990). Spetsialnie pribori dlya injenerno-geodezicheskih rabot [Special devices for engineering and geodetic works]. M.: Nedra, 64-66. (in Russian).
  4. Yusupbekov, N.R., Aliev, R.A., Yusupbekov, A.N., Aliev R.R. (2013). Vichislitelniy intelekt i y ego sostavlyayushie. Himicheskaya tehnologiya. Kontrol i upravlenie, 3. (in Russian).
  5. Kamen, H. (1982). Elektronnie sposobi izmereniy v geodezii [Electronic methods of measurements in geodesy]. Perevod s nem. M.: Nedra, 88-99. (in Russian).
  6. Yusupbekov N.R., Aliev R.A., Aliev R.R., Yusupbekov A.N. (2014). Intellektualnie sistemi upravleniya i prinyatiya resheniy [Intelligent control and decision-making systems]. Tashkent: Uzbekiton Milliy ensiklopediyasi, 488 p. (in Russian).
  7. Katis, G.P. (1990). Obrabotka vizaualnoy informatsii [Processing of visual information]. M.: Mashinostroyenie, 134-159. (in Russian).
  8. Zahidov, N.M., Samborskiy, A.A. (2020). Optiko – elektronniy registrator otkloneniya ot pryamolineynosti so svetovodnim analizatorom [Optoelectronic straightness recorder with light guide analyzer]. IX nauch-prak.konf. “Aktualniye voprosi geodezii u geoinformatsionnih sistem”, Kazan, 84-91. (in Russian).
  9. Tude, Shteffen, Lukas, Hayner, Adamchak, Volfgan (2010). Elektrooptichaskoe ustroystvo vivoda, a takje izmeritelniy pribor s elektroopticheskim ustroystvom vivoda [Electro-optical output device, as well as a measuring device with an electro-optical output device]. Pat. 2459182C2 RU. Byul. 12. 27.04.2010. (in Russian).
  10. Besmeltsev, V.P., Volkov, E.G. (1980). Indikarotnoe ustroystvo dlya otobrajeniya rezultatov komparirovaniya rabochih mer priborom DIP – 2 M [Indicative device for displaying the results of comparating working measures by the DIP-2 M device]. Trud: NIIPG, 4, 61-65. (in Russian).
  11. Shchelevaya vizirnaya marka i sposobi eyo ispolzovaniya pri stvornih izmereniyah. Pat. 1142347 Can. MKI GOI c 15/00. Opubl 08.03.89. (in Russian).
  12. Zatsazinniy, A.V. (1976). Avtomatizatsiya visokotochnih injenerno-geodezicheskih izmereniy [Automation of high-precision engineering and geodetic measurements]. M.: Nedra, 106-109. (in Russian).
  13. Bistrov, Yu. A., Litvak, I.I., Persianov, G.I. (1985). Elektronnie pribori dlya otobrajeniya informatsii [Electronic devices for displaying information]. M.: Radio i svyaz, 108-114. (in Russian).
  14. Groshev, A.A., Sergeev, V.B. (1977). Ustroystva otobrajeniya informatsii na osnove jidkih kristallov [Information display devices based on liquid crystals]. Leningrad: Energiya, 5-30. (in Russian).
  15. Zahidov, N.M., Koveshnikov, S.V. (2021). Distantsionnoe ustroystvo dlya izmereniya otkloneniy ot pryamolineynosti [Remote straightness measuring device]. Pat. IAP 06582 UZ. Opubl. 15.09.2021. (in Russian).
  16. Bobrovnikov, L.Z. (1990). Radiotehnika i elektronika [Radio engineering and electronics]. Moskva: Nedra, 309-315. (in Russian).
  17. Mikushin, A.V., Sajnev, A.M., Sedinin, V.I. (2010). Sifrovie ustroystva i mikroprossesori SP6 [Cipher devices and microprocessors SP6]. BHY. (in Russian).
  18. Vasilevskiy, A.M., Kropotkin, M.A., Tihonov, V.V. (1990). Opticheskaya elektronika [Optical electronics]. Leningrad: Energo atomizdat, 80-84. (in Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.