•  
  •  
 

Abstract

The problem of placing poles in linear multidimensional systems using a feedback matrix of unlimited rank is considered. The effect of output feedback of indefinite rank of the characteristic polynomial of a system with several variables is studied. The results are then used to obtain a recurrent pole placement algorithm without any restrictions on the rank of the output feedback matrix used. The algorithm is based on the pseudo-inverse concept of obtaining solutions to systems of linear equations using the least squares method and is computationally efficient.

First Page

63

Last Page

71

References

  1. Grigor'ev, V.V., ZHuravlyova, N.V., Luk'yanova, G.V., Sergeev, K.A. (2007). Sintez sistem avtomaticheskogo upravleniya metodom modal'nogo upravleniya [Synthesis of automatic control systems by modal control method]. S-Pb: SPbGU ITMO. 143 p. (in Russian).
  2. Dorf, R., Bishop, R. (2002). Sovremennye sistemy upravleniya [Modern control systems]. M.: Laboratoriya Bazovykh znanij. 832 p. (in Russian).
  3. Andreev, YU.N. (1976). Upravlenie konechnomernymi linejnymi ob"ektami [Management of finite-dimensional linear objects]. M.: Nauka, 424 p. (in Russian).
  4. Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N. (2016). Matrichnye metody v teorii i prakticheskie sistem avtomaticheskogo upravleniya letatel'nykh apparatov [Matrix Methods in Theory and Practical Aircraft Automatic Control Systems]. Moskva: Izdatel'stvo MGTU im. N.EH.Baumana. 666 p. (in Russian).
  5. Misrikhanov, M.SH., Ryabchenko, V.N. (2011). Razmeshhenie polyusov v bol'shikh dinamicheskikh sistemakh s mnogimi vkhodami i vykhodami [Pole placement in large dynamic systems with many inputs and outputs]. Doklady Rossijskoj akademii nauk, 434(4). 1-3. (in Russian).
  6. Misrikhanov, M.SH. (2007). Invariantnoe upravlenie mnogomernymi sistemami. Algebraicheskij podkhod [Invariant control of multidimensional systems. Algebraic approach]. M.: Nauka, 398 p. (in Russian).
  7. Ushakov, A.V. (2002). Obobshhennoe modal'noe upravleniya [Generalized modal control]. Izv. vuzov. Priborostroenie. 43(3), 8-15.
  8. Yusupbekov, N.R., Igamberdiev, H.Z., Sevinov, J.U. (2020). Formalization Of Identification Procedures Of Control Objects As A Process In The Closed Dynamic System And Synthesis Of Adaptive Regulators. Journal of Advanced Research in Dynamical and Control Systems, 12(6s), 77-88. DOI:10.5373/JARDCS/V12SP6/SP20201009.
  9. Sevinov, J.U., Boeva, O. (2022). Synthesis algorithms for adaptive-modal control systems for technological objects with delays. AIP Conference Proceedings 2647, 030007 (2022). https://doi.org/10.1063/5.0104891.
  10. Igamberdiev, H.Z., Boeva, O.H., Sevinov, J.U. (2020). Sustainable algorithms for selecting feedback in dynamic object management systems. Journal of Advanced Research in Dynamical and Control Systems, 12(7 Special Issue), 2162-2166.
  11. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.Sh., Ryabchenko, V.N. (2016). Output Control of the Spectrum of a Descriptor Dynamical System. Doklady Mathematics, 93(3), 259-261.
  12. Igamberdiev, H.Z., Sevinov, J.U., Boeva, O.H. (2021). Algorithms for modal control synthesis in multi-dimensional dynamic system. Chemical Technology, Control and Management, 5(7), 45-51. DOI: https://doi.org/10.51346/tstu-02.21.5-77-0040.
  13. Mamirov, U.F. (2021). Regulyarnyj sintez sistem adaptivnogo upravleniya neopredelennymi dinamicheskimi ob"ektami [Regular synthesis of adaptive control systems for uncertain dynamic objects]. Tashkent: «Bilim va intellektual salohiyat». 215 p. (in Russian).
  14. Igamberdiev, KH.Z., Sevinov, ZH.U., Zaripov, O.O. (2014). Regulyarnye metody i algoritmy sinteza adaptivnykh sistem upravleniya s nastraivaemymi modelyami [Regular methods and algorithms for the synthesis of adaptive control systems with customizable models]. T.: TashGTU. 160 p. (in Russian).
  15. Tyutikov, V.V., Tararykin, S.V. (2006). Robastnoe modal'noe upravlenie tekhnologicheskimi ob"ektami [Robust Modal Control of Technological Objects]. Ivanovo: IGEHU. 256 p. (in Russian).
  16. Yusupbekov, N.R., Igamberdiev, H.Z., Sevinov, J.U. (2020). Formalization of Identification Procedures of Control Objects as a Process in the Closed Dynamic System and Synthesis of Adaptive Regulators. Journal of Advanced Research in Dynamical and Control Systems, 12(06-Special Issue), 77-88. DOI: 10.5373/JARDCS/V12SP6/SP20201009.
  17. Sevinov, ZH.U., Boeva, O.KH. (2021). Programmnoe obespechenie dlya resheniya zadach modal'nogo upravleniya s ispol'zovaniem optimal'nogo algoritma tsifrovogo regulyatora sostoyanij [Software for solving problems of modal control using the optimal algorithm of the digital state controller]. DGU 11396. 22.04.2021.
  18. Sevinov, J.U., Boeva, O.H. (2020). Adaptive pole placement algorithms for of non-minimum-phase stochastic systems. Chemical technology. Control and management, 5-6, 38-43.
  19. Gantmakher, F.R. (1988). Teoriya matrits [Matrix theory]. M.: Nauka. Fiz.-mat. lit. 552 p. (in Russian).
  20. Tikhonov, A.N., Arsenin, V.YA. (1986). Metody resheniya nekorrektnykh zadach [Methods for solving ill-posed problems]. M.: Nauka. 288 p. (in Russian).
  21. Morozov, V.A. (1987). Regulyarnye metody resheniya nekorrektno postavlennykh zadach [Regular methods for solving ill-posed problems]. M.: Nauka. (in Russian).
  22. Vajnikko, G.M., Veretennikov, A.YU. (1986). Iteratsionnye protsedury v nekorrektnykh zadachakh [Iterative procedures in ill-posed problems]. M.: Nauka. (in Russian).
  23. Voevoda, A.A., Voronoj, V.V. (2011). Modal'nyj sintez regulyatorov ponizhennogo poryadka metodom differentsirovaniya kharakteristicheskogo polinoma [Modal synthesis of low-order controllers by the method of differentiation of the characteristic polynomial]. Sb. nauch. tr. NGTU. 1(63), 3-12. (in Russian).
  24. Kochetkov, S.A., Utkin, V.A. (2014). Minimizatsiya normy matritsy obratnoj svyazi v zadachakh modal'nogo upravleniya [Minimizing the Norm of the Feedback Matrix in Modal Control Problems]. AiT. 2, 72-105. (in Russian).
  25. Jie, Cui, Gangtie, Zheng. (2020). An iterative state-space component modal synthesis approach for damped systems. Mechanical Systems and Signal Processing, 142 (2020) 106558, 1-28.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.