•  
  •  
 

Abstract

The article examines the magnetic circuits of both existing and developed differential transformer displacement sensors for large linear displacements. These circuits are characterized by a specific distribution structure of magnetic resistance parameters in long ferromagnetic cores and the magnetic capacitance between them. It is shown that in the existing sensor, the distribution of working magnetic flux along the length of the ferromagnetic cores has a nonlinear nature, resulting in a nonlinear relationship between the output signal in the form of electromotive force and the input linear displacement of the sensor. It has been established that by selecting the law of variation of the working air gap between the average and inner concentric cores along the displacement of the movable measurement winding, with the average concentric core being shaped as a rotational paraboloid, a linear distribution of working magnetic fluxes along the length of the ferromagnetic cores and linearity of the conversion characteristic of the differential transformer displacement sensor for large linear displacements are achieved.

First Page

18

Last Page

27

References

  1. Yusupbekov N.R., Igamberdiev H.Z., Malikov A.V. (2007). Osnovy avtomatizatsii tekhnologicheskikh protsessov [Fundamentals of automation of technological processes]. V 2-kh ch. Tashkent: TGTU,. ch.1, 2. 152 p., 173 p. (in Russian).
  2. Miroshnik, I.V. (2005). Teoriya avtomaticheskogo upravleniya: Linejnye sistemy [Automatic control theory: Linear systems]. Sankt-Peterburg: Piter, 336 p. (in Russian).
  3. Fedotov, A.V. (2011). Teoriya i raschet induktivnykh datchikov peremeshhenij dlya sistem avtomaticheskogo kontrolya [Theory and calculation of inductive displacement sensors for automatic control systems]. Omsk: Izd-vo OmGTU, 176 p. (in Russian).
  4. Rachkov, M.YU. (2006). Tekhnicheskie sredstva avtomatizatsii [Technical means of automation]. Moskva: MGIU, 185 p. (in Russian).
  5. Lukashkin, V.G., Garipov, V.K., Sleptsov, V.V., Vishnekov, A.V. (2005). Avtomatizatsiya izmerenij, kontrolya i upravleniya [Automation of measurements, control and management]. Moskva: Mashinostroenie, 663 p. (in Russian).
  6. Amirov, S.F., Sulliev, A.KH. (2015). Biparametricheskie rezonansnye datchiki dlya sistem upravleniya skorosti dvizheniya poezdov [Biparametric resonance sensors for train speed control systems]. Tashkent: Fan va tekhnologiya, 178 p. (in Russian).
  7. Gol'shtejn, A.E. (2008). Fizicheskie osnovy izmeritel'nykh preobrazovanij [Physical foundations of measurement transformations]. Tomsk: izd-vo TPU, 2523 p. (in Russian).
  8. Kulikovskij, L.F., Konyukhov, N.E., Mednikov, F.M. (1971). Transformatornye funktsional'nye preobrazovateli s profilirovannymi vtorichnymi konturami [Transformer functional converters with profiled secondary circuits]. Moskva: Energiya, 103 p. (in Russian).
  9. Konyukhov, N.E., Mednikov, F.M., Nechaevskij, M.L. (1987). EHlektromagnitnye datchiki mekhanicheskikh velichin [Electromagnetic sensors of mechanical quantities]. Moskva: Mashinostroenie, 256 p. (in Russian).
  10. Zaripov, M.F. (1969). Preobrazovateli s raspredelennymi parametrami dlya avtomatiki i informatsionno-izmeritel'noj tekhniki [Converters with distributed parameters for automation and information and measuring equipment]. Moskva: Energiya, 176 p. (in Russian).
  11. Amirov, S.F., Sharapov, Sh.A. (2023). Mathematical Models of Displacement Measurement Differential Transformer Sensors with Different Drive Elements and Magnetic. European Multidisciplinary Journal of Modern Science (EMJMS), 15, 1-8.
  12. Bronshtejn, I.N., Semendyaev, K.A. (1986). Spravochnik po matematike dlya inzhenerov i uchashhikhsya vtuzov [Handbook of Mathematics for engineers and students of higher education institutions]. Moskva: Nauka. Gl. red. Fiz.–mat. lit., 544 p. (in Russian).
  13. Amirov, S.F., Sulliev, A.KH., Fajzullaev, ZH.S., Sharapov, SH.A., Sattorov, T.A., Mamadaliev, U.SH. (2023). Transformatornyj datchik bol'shikh linejnykh peremeshhenij [Transformer sensor of large linear displacements]. Zayavka na patent RUz (UZ) IAP 2023 0120. Zayavleno: 09.03. 2023.
  14. Demirchyan, K.S., Nejman, L.R., Korovkin, N.V., Chechurin, V.L. (2006). Teoreticheskie osnovy ehlektrotekhniki [Theoretical foundations of electrical engineering]. Sankt-Peterburg: Piter, 464 p. (in Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.