•  
  •  
 

Abstract

The article deals with the creation of intelligent monitoring systems for complex technological processes. The methods and models of the intellectualization of information processing systems are analyzed. The advantages of using intelligent measuring instruments in monitoring systems are given, which allow obtaining reliable information necessary for the effective control of complex technological processes. The issues of using intelligent measuring instruments in monitoring systems are considered. A block diagram of intelligent monitoring of signal processing of complex production processes has been proposed. An algorithm for parametric correction of intelligent measuring instruments in monitoring systems has been developed. A model of a monitoring system is presented that allows adapting to constantly changing controlled parameters based on an updated knowledge base.

First Page

28

Last Page

34

References

  1. Farhadzadeh, E.M., Muradaliyev, A.Z., Abdullayeva, S.A. (2021). Comparison And Ranking Of Operational Reliability Indicators Of Overhead Transmission Lines Of Electric Power Systems. Reliability: Theory and Applications. 16(4), 186-196. DOI: 10.24412/1932-2321-2021-465-186-196.
  2. Konichenko, A.V., Ostrovskiy, E.O., Uryaseva, M.V. (2021). The model for computation of complex technical objects parameters based on subdefinite calculations. Journal of Physics: Conference Series. 1843(1). 012008. DOI: 10.1088/1742-6596/1843/1/012008.
  3. Tajmanov, R.E., Sapozhnikova, K.V. (2010). Metro- logicheskij samokontrol' datchikov [Metrological self-monitoring of sensors]. Trudy konferentsii «Tekhnicheskie i programmnye sredstva sistem upravleniya, kontrolya i izmereniya». Moskva, 1088-1099. (in Russian).
  4. Korshunov, G.I., Aleksandrov, A.A., Tamvilius, A.R. (2020). A Cyber-Physical System for Monitoring the Technical Condition of Heat Networks. Lecture Notes in Networks and Systems. 95, 407-412. DOI: 10.1007/978-3-030-34983-7_39.
  5. Averyanov, V.S., Kartsan, I.N., Efremova, S.V. (2021). Methods of automated detection of anomalies and nonlinear transitions by autonomous unmanned aerial vehicles. Journal of Physics: Conference Series. 1889(4) 042001. DOI: 10.1088/1742-6596/1889/4/042001.
  6. Pirozzi, M., Donato, L.D., Tomassini, L., Ferraro, A. (2020). Possible innovative technical measures for risk prevention during the use of mobile machines with remote guide/control. Procedia Manufacturing. 42, 457-461. DOI: 10.1016/j.promfg.2020.02.049.
  7. Han, C.H., Park, S.T., Lee, S.J. (2019). The enhanced security control model for critical infrastructures with the blocking prioritization process to cyber threats in power system. International Journal of Critical Infrastructure Protection. 26 100312. DOI: 10.1016/j.ijcip.2019.100312.
  8. Zhu, L., Wang, J., Liu, J., Xu, Z., Nasir, M.S., Chen, X., Wang, Z., Sun, S., Ma, Q., Liu, J., Feng, J., Liang, J., Yan, W. (2022). In situ enrichment amplification strategy enabling highly sensitive formaldehyde gas sensor. Sensors and Actuators B: Chemical. 354 131206. DOI: 10.1016/j.snb.2021.131206.
  9. Weiss, G., Schleiss, P., Schneider, D., Trapp, M. (2018). Towards integrating undependable self-adaptive systems in safety-critical environments. Proceedings - International Conference on Software Engineering. 26-32 DOI: 10.1145/3194133.3194157.
  10. Vinogradenko, A.M., Mezhenov, A.V., Budko, N.P. (2019). K voprosu obosnovaniya ponyatijnogo apparata nerazrushayushhego ehkspress-kontrolya tekhnicheskogo sostoyaniya oborudovaniya sistemy svyazi i radiotekhnicheskogo obespecheniya aehrodroma [On the issue of substantiation of the conceptual apparatus of non-destructive express control of the technical condition of the equipment of the communication system and radio engineering support of the airfield]. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli. 11(6), 30-44. DOI: 10.24411/2409-5419-2018-10293. (in Russian).
  11. Snyder, E.G., Watkins, T.H., Solomon, P.A., Thoma, E.D., Williams, R.W., Hagler, G.S., Shelow, D., Hindin, D.A., Kilaru, V.J., Preuss, P.W. (2013). The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 47(20), 11369-11377.
  12. Williams, D.E., Henshaw, G.S., Bart, M., Laing, G., Wagner, J., Naisbitt, S., Salmond, J.A. (2013). Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network. Meas. Sci. Technol. 24 (6).
  13. Budko, P.A., Vinogradenko, A.M., Mezhenov, A.V., Chikirev, A.A. (2020). Sposob i ustrojstvo intellektual'nogo ehkspress-kontrolya tekhnicheskogo sostoyaniya nazemnykh sredstv svyazi i radiotekhnicheskogo obespecheniya poletov [Method and device for intelligent express control of the technical condition of ground-based communications and radio engineering support of flights]. Sistemy upravleniya, svyazi i bezopasnosti. 1, 235-283. DOI: 10.24411/2410-9916-2020-10108. (in Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.