•  
  •  
 

Abstract

The theory and practice of establishing industrial automation systems for glass furnaces and installations as they are right now are taken into consideration. Comparative analysis is based on publications over the last 20 years in the field being studied. On the basis of an analysis of the review materials, generalizations are made that form the basis for proposals aimed at modernizing and improving the technology and instrumentation of fuel combustion processes in gas-burning furnaces and installations, as well as monitoring and control systems for technological processes occurring in glass furnaces and installations.

First Page

63

Last Page

75

References

  1. Rotter, P., Skowiniak, A. (2013). Image-based analysis of the symmetry of the glass melting process. Glass Technology: European Journal of Glass Science and Technology. Part A 54, 119-131.
  2. Zhuchenko, A. І., Tsapar, V.S. (2013). Doslіdzhennya temperaturnikh polіv sklovarnoї pechі [Study of the temperature fields of the glass furnace]. Skhіdno-Єvropejs'kij zhurnal peredovikh tekhnologіj. 2/8 (62), 49-52. (in Ukrainian).
  3. Schaeffer, H.A., Muller-Simon, H. (2010). Glass melt stability. In: Fiberglass and Glass Technology – Energy- Friendly Compositions and Applications. ed. By F.T. Wallenberger, P.A. Bingham (Springer, Berlin). 413-429.
  4. Rotter, P. (2014). Extraction of relevant glass melting parameters based on the pairwise comparisons of sample images from a furnace. Glass Technology: European Journal of Glass Science and Technology. Part A 55, 55-62.
  5. Yugov, A.M., Moskalenko, V.I., Ikhno, A.V., Yudkalo, D.A. (2009). Opredelenie temperaturnykh polej na kontaktirushhikh poverkhnostyakh vneshnego kontura agregata steklovarennoj pechi [Determination of temperature fields on the contacting surfaces of the external contour of the glass furnace unit]. Tekhnologіya, organіzatsіya, mekhanіzatsіya ta geodezichne zabezpechennya budіvnitstva. 6(80), 76-83. (in Russian).
  6. Sardeshpande, V., Gaitonde, U.N., Banerjee, R. (2007). Model based energy benchmarking for glass furnace. Energy Conversion and Management. 48, 2718-2738.
  7. Ross, P.C., Myers, D.D. (2008). Amber glass – 40 years of lessons learned. In: A Collection of Papers Presented at the 66th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, ed. by W.M. Kriven (Wiley, Chichester). 129-139.
  8. An innovative oxygen combustion technology for environment friendly primary flat glass production – Available at: [accessed 19.5.2018].
  9. Gulyamov, Sh.M., Kholmanov, U.U., Rajabov, A.T. (2021). Intelligent Glass Furnaces Temperature Control System. Solid State Technology Volume. 64(2). 3156-3163.
  10. Sulikova, V.A. (2014). Algoritm nechetkogo upravleniya protsessom varki stekla [Algorithm for fuzzy control of the glass melting process]. Vestnik OGU. 3, 173-179. (in Russian).
  11. Kholmanov, U.U. (2020). Structural - parametric analysis and synthesis of the observer of the state of a glass furnace. Chemical technology control and management. 04, 52-56.
  12. Gulyamov, Sh.M., Kholmanov, U.U., Rajabov, A.T. (2021). Mathematic simulation of glass melting process in glass production. Chemical technology control and management. 2 (98), 70-74. https://doi.org/10.51346/tstu-02.21.1-77-0010
  13. Kholmanov, U.U., Rajabov, A.T. (2020). Automatic control and management of technological processes of glassmaking production. Journal of Advanced Research in Dynamical and Control Systems. 12(6), 764-770.
  14. Hubert, M., Faber, A.J., Sesigur, H., Akmaz, F., Kahl, S.R., Alejandro, E., Maehara, T. (2017). Impact of redox in industrial glass melting and importance of redox control. In: 77th Conference on Glass Problems, ed. by S.K.Sundaram (Wiley, Chichester). 113-128.
  15. Scalet, B.M., Garcia Munoz, M., Sissa, A.Q., Roudier, S., Delgado, L.S. (2013). Best Available Techniques (BAT) Reference Document for the Manufacture of Glass, JRC Reference Report (European Commission, Brussels). https://doi.org/10.2791/69502.
  16. Pilon, L. (2012). Foams in glass manufacturing. In: Foam Engineering, ed. by P. Stevenson (Wiley, Hoboken). 355-409.
  17. Beerkens, R. (2011). Concepts for energy & emission friendly glass melting: Evolution or revolution in glass melting. In: Proceedings of 9th International Conference on Advances in Fusion and Processing of Glass. Cairns, Australia, July 11-14, Available at: [accessed 19.5.2018].
  18. Elisa, M., Iordanescu, C.R., Vasiliu, I.C., Feraru, I.D., Epurescu, G., Filipescu, M., Plapcianu, C., Bartha, C., Trusca, R., Peretz, S. (2017). Synthesis and characterization of PLD glass phosphate films doped with CdS. J. Mater. Sci. 52, 2895-2901.
  19. Lankhorst, A., Thielen, L., van der Dennen, J., del Hoyo Arroyo, M. (2014). Application of an energy balance model for improving the energy efficiency of glass melting furnaces. In: 74th Conference on Glass Problems, ed. by S.K. Sundaram (Wiley, Chichester). 51-68.
  20. Yusupbekov, N.R., Kholmanov, U.U. (2020). Sistema kontrolya i upravleniya teplovym rezhimom steklovarennoj pechi [System for monitoring and controlling the thermal regime of a glass melting furnace]. Zhurnal «Promyshlennye ASU i kontrollery». 4, 3-7. (in Russian).
  21. Kholmanov, U.U., Rajabov, A.T. (2021). Automatic Control of Fuel Efficiency in Gas Burning Furnaces. Advances in Intelligent Systems and Computing. 1323 AISC, 334-341. doi:10.5373/JARDCS/V12SP6/SP20201092.
  22. Yusupbekov, N.R., Kholmanov, U.U. (2020). Dinamicheskaya model' tekhnologicheskogo protsessa varki stekla v steklovarennykh pechakh [Dynamic model of the technological process of glass melting in glass furnaces]. Zhurnal «Promyshlennye ASU i kontrollery». 9, 19-26. (in Russian).
  23. Onishhuk, V.I, Kostenko, S.E., Zhernovaya, N.F. (2010). Sovremennye steklovarennye pechi i puti povysheniya ikh tekhniko-ehkonomicheskikh pokazatelej [Modern glass melting furnaces and ways to improve their technical and economic performance]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHukhova. 3, 127-130. (in Russian).
  24. Backx, A.C.P.M. (2002). Model-based glass melter control. Mathematical simulation in glass technology. 137-155.
  25. Rotter, P., Skowiniak, A. (2013). Projekt i prototyp systemu komputerowej analizy system for glass furnaces. Pomiary, Automatyka, Kontrola. 59, 684-687.
  26. Ruud, G.C. (2002). Beerkens, Hans van Limpt, Yenergy Yefficiency Benchmarking of Glass Furnaces. A collection of papers presented at the 62nd Conference on Glass Problems. 93-105.
  27. Manoj, K. Choudhary. (2002). Recent Advances in Mathematical Modeling of Flow and Heat Transfer Phenomena in Glass Furnaces. Glass and Optical Materials. J. Am. Ceram. Soc. 85(5), 1030-1036.
  28. Petr Schill, Miroslav Trochta (2004). Mathematical modeling of batch melting in a glassfurnace. Advances in Fusion and Processing of Glass III. 445-451.
  29. Reboussin, Y., Fourmigueґ, J.F., Marty, Ph., Citti, O. (2005). A numerical approach for the study of glass furnace regenerators. Applied Thermal Yengineering. 25, 2299-2320.
  30. Qingyu, Y., Xianghua, U., Ren s’hi (2004). Design and Application Research on DCS Used for Large Glass Furnace. Proceedings of the 5'" World Congress on Intelligent Control and Automation, Hangzhou, P.R. China, 3418-3421.
  31. Andrea, R. Holladay (2005). Modeling and control of a small glass furnace. Graduate Theses, Dissertations, and Problem Reports. 1668. https://researchrepository.wvu.yedu/yetd/1668.
  32. Laurent, P., Guochang, Zh., Raymond, V. (2011). Three-Dimensional Flow and Thermal Structures in Glass Melting Furnaces. Glass Science and Technology. 75(3), 115-124.
  33. Qi Jianling, Deng Zhenjie, Li Yezi (2007). Design of Fuzzy PID Controller and Application in Glass Furnace. The Yeighth International Conference on Yelectronic Measurement and Instruments “ICEMI-2007”. 224-227.
  34. Vis’hal Sardes’hpande, U.N. Gaitonde, Rangan Banerjee (2007). Model based yenergy benchmarking for glass furnace. Yenergy Conversion and Management. 48, 2718-2738.
  35. Yaochun Yao, TakayukiWatanabe, Tetsuji Yano, Toru Iseda,Osamu Sakamoto, Masanori Iwamoto and Satoru Inoue (2008). An innovative yenergy-saving in-flight melting technology and its application to glass production. SCIENCE AND TEChNOLOGY OF ADVANCEDMATERIALS. 9. doi:10.1088/1468-6996/9/2/025013.
  36. Amin Aeinmehr Alireza Yazdizadeh M. S. Ghazizadeh G. Latif S’habgahi (2009). Modeling and Temperature Control of A Glass Furnace with Preheated Air Using A Gas Turbine. IEEE International Conference on Control and Automation Christchurch. 2077- 2082.
  37. Aeinmehr, A., Yazdizadeh, A., Ghazizadeh, M. (2008). Modeling and Control of Glass Furnace Temperature with Preheated Air by Gas Turbine. M.Sc. Thesis, Power and Water University of Technology.
  38. Yeshenko, A.A., Yeshenko, I.A. (2011). Strukturnye modeli regenerativnoj pechi s poperechnym napravleniem plameni kak ob"ekta avtomaticheskogo upravleniya [Structural models of a regenerative furnace with a transverse flame direction as an automatic control object]. Vestnik IRGTU. 7(54), 120-125. (in Russian).
  39. Oscar Díaz-Ibarra, Pablo Abad, Alejandro Molina (2013). Design of a day tank glass furnace using a transient model andsteady-state computation fluid dynamics. Applied Thermal Yengineering. 52, 555-565. http://dx.doi.org/10.1016/j.applthermaleng.2012.11.018
  40. Erik Muijsenberg. (2013). A Furnace Combustion System Conversion by Flammatec during Operation at Libbey, Inc. - How Flame Geometry Improvement and Yexcess Air Control Contributes to Fuel Savings. International Conference on Glass (ICG), Prague, Czech Republic. DOI: 10.1002/9781118710838.ch7.
  41. Yandachek, P., Kovach, M., Zozulya, YU.G., Kostenko, S.E. (2014). Modelirovanie energoeffektivnykh steklovarennykh pechej [Modeling of energy-efficient glass melting furnaces]. Vestnik BGTU im. V.G. Shukhova. 5, 169-175. http://dspace.bstu.ru/jspui/handle/123456789/888. (in Russian).
  42. Tien-I Liu, Carl S. Lyons, Sukanya, S., Che-Hua Yang (2014). Intelligent measurements for monitoring and control of glass production furnace for green and yefficient manufacturing. Int J Adv Manuf Technol. 75, 339-349. DOI 10.1007/s00170-014-6140-9.
  43. Kumaran Rajarathianm, J. Barry Gomm, Karl Jones, Ahmed Saad Abdelhadi (2014). Decentralised Control Optimisation for a Glass Furnace by SGA’s. International Conference on Computer Systems and Technologies - CompSysTech’14, Ruse, Bulgaria. 248-255. http://dx.doi.org/10.1145/2659532.2659614
  44. Apkar’yan, A.S. (2016). Development of an automatic control system for the technological process of firing granular glass ceramic material. Glass and Ceramics. 73, 298-301. DOI 10.1007/s10717-016-9876-x.
  45. Erik Muijsenberg (2016). Intelligent Furnace Design & Control to Increase Overall Glass Furnace Yefficiency. 76th Conference on Glass Problems. DOI: 10.1002/9781119282471.ch13.
  46. Pwel Rotter, Maciej Klemiato (2017). Prototype vision-based system for the supervision of the glass melting process: implementation for industrial yenvironment. Trends in Advanced Intelligent Control, Optimization and Automation, Advances in Intelligent Systems and Computing 577. Springer International Publis’hing AG 2017, 364-369. doi 10.1007/978-3-319-60699-6_35.
  47. Erik Muijsenberg, Robert Bodi (2017). A self-driving glass melting process. Article in Glass International. https://www.researchgate.net/publication/317753592.
  48. Dzyuzer, V.YA. (2017). Obobshhennyj analiz teplovoj raboty steklovarennykh pechej [Generalized analysis of the thermal performance of glass furnaces]. Ogneupory ezhemesyachnyj nauchno-tekhnicheskij i proizvodstvennyj zhurnal. 2, 15-18. https://doi.org/10.17073/1683-4518-2017-2-15-18. (in Russian).
  49. Marcela Jebavá, Lubomír Němec (2018). Role of glass melt flow in container furnace yexamined by mathematical modelling. Ceramics-Silikáty. 62 (1), 86-96. doi: 10.13168/cs.2017.0049
  50. Yerik Muijsenberg (2018). How the Industrial Revolution 4.0 Will Impact the Glass Industry 247 Image Analysis that is Part of YeS 4.0 is a Key Component towards Industry 4.0. Ceramic Yengineering and Science Proceedings. 39(1). DOI: 10.1002/9781119519713.ch21
  51. Adam Mussomeli, Doug Gis’h and Stephen Laaper, “The rise of the digital supply network: Industry 4.0 yenables the digital transformation of supply chains,” Deloitte Insights, December 1, 2016.
  52. Jiahong Yu, Guixiang Wang, Zhuo Chen, Zuofu Pan, Nali Sun, Wenqiao Liu (2018). Study on Infrared Radiation Coating and its Application in Glass Furnace. IOP Conf. Series: Materials Science and Yengineering 394, ACMME. doi:10.1088/1757-899X/394/4/042059
  53. Garrido-Zafra, J., Moreno-Munoz, A., Gil-de-Castro, A., Bellido-Outeirino, F., Medina-Gracia, R., Yelena Gutiérrez. Load Scheduling Approach for Yenergy Management and Power Quality yenhancement in Glass Melting Furnaces (2019). International Conference on Yenvironment and Yelectrical Yengineering and 2019 IEEE Industrial and Commercial Power Systems Yeurope (YeEEIC / I&CPS Yeurope). DOI:10.1109/YeEEIC.2019.8783727
  54. Luyao, L., Huey-Jiuan L., Jianjun H., Jian R., Jun X. Xiujian, Zh. (2019). Three-Dimensional Glass Furnace Model of Combustion Space and Glass Tank with Yelectric Boosting. Materials Transactions. 60(6). 1034-1043. DOI:10.2320/matertrans.M2019044
  55. Bryn Snow, Crawford Murton, Corey Foster (2019). Digitally mapping the future of glass furnaces with lasers. 79 th Conference on Glass Problems. 157-168.
  56. Beknazarian, D.V., Kanevets, G.Ye., Strogonov, K.V. (2020). Methodological bases of optimization of thermal insulation structures of glass furnaces. The Third Conference "Problems of Thermal Physics and Power Yengineering. 052027. doi:10.1088/1742-6596/1683/5/052027
  57. Beknazaryan, D.V., Kos’helnik, V.M., Larin, A.A. (2014). Algorithm of calculation and study of corrosion wear of side fences of a glass-burning furnace bathroom. Yeastern Yeuropean Journal of Advanced Technologies– 2014. 3, 8-27.
  58. Reinhard Conradt, Erik Muijsenberg (2021). Physics and Modeling of Glass Furnaces. Yencyclopedia of Glass Science, Technology, History and Culture. 1165-1177. DOI:10.1002/9781118801017.ch 9.8
  59. Galtier, M., Woelffel, W., André, F., Solovjov, V.P., Webb, B.W., Roy, S. (2021). Assessment of yengineering gas radiation methods in an industrial glass furnace configuration. 8th Yeuropean Thermal Sciences Conference (YeUROTHERM). doi:10.1088/1742-6596/2116/1/012067.
  60. ZHuchenko, A.І., Sitnіkov, O.V. (2022). Doslіdzhennya temperaturnikh polіv sklovarnoї pechі [Study of the temperature fields of the glass furnace]. Bulletin of National Technical Universitj of Ukraine «Igor Sikorskj Kjiv Poljtechnic Institute» Series «CHemical Engineering, Ecologj and Resource Saving». 2 (21), 34-41. doi: 10.20535/2617-9741.2.2022.260343. (in Ukrainian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.