Abstract
In this work, based on the theory of barycentric coordinates and simplexes, a linear interpolation method is proposed for modeling and controlling the operation of multiparameter converters. It has been determined that the linear interpolation method minimizes the structural diagram of a computing device, which makes it possible to more accurately determine the metrological characteristics of multiparameter measuring transducers and offer effective methods and means for processing primary measurement information. A theorem has been proven about a linear interpolating polynomial of a function of many variables, which will allow us to judge the property of linearization of multidimensional quantities from both qualitative and instrumental points of view, and a theorem that helps determine an accurate estimate of the interpolation error.
First Page
84
Last Page
90
References
- Kotyuk, A.F. (2007). Datchiki v sovremennykh izmereniyakh [Sensors in modern measurements]. Radio i svyaz', 96 p. (in Russian).
- Sagatov, M.V. (2002). Mathematical Modeling of Multiparameter Measuring Transducers. Second World Conference on Intelligent Systems for Industrial Automation (WCIS-2002), Tashkent, Uzbekistan, 190-193.
- Gulyamov, Sh.M., Sagatov, M.V., Sytnik, A.A. (2004). Mathematical modeling the multipleparameter measuring converters and optimization their metrological characteristics. 6th International Conference “Control Of Power Systems’04”, Slovak Republic. 1-5.
- Verlan', A.F., Sytnik, A.A., Sagatov, M.V. (2011). Metody matematicheskogo i komp'yuternogo modelirovaniya izmeritel'nykh preobrazovateley i sistem na osnove integral'nykh uravneniy [Methods of mathematical and computer modeling of measuring transducers and systems based on integral equations]. Tashkent: Fan, 344 p. (in Russian).
- Verzhbitskiy, V.M. (2002). Osnovy chislennykh metodov [Basic Numerical Methods]. M.: Vysshaya shkola. (in Russian).
- Sizikov, V.S. (2001). Matematicheskiye metody obrabotki rezul'tatov izmereniy [Mathematical methods for processing measurement results]. Sankt-Peterburg: Politekhnika, 240 p. (in Russian).
- Zaliznyak, V.Ye. (2013). Chislennyye metody. Osnovy nauchnykh vychisleniy [Numerical methods. Basics of Scientific Computing]. M.: Yurayt, 368 p. (in Russian).
- Mikheyev, S.Ye. (2013). Mnogomernaya approksimatsiya i interpolyatsiya [Multidimensional approximation and interpolation]. M.: Sankt-Peterburgskiy gosudarstvennyy universitet (SPbGU), 864 p. (in Russian).
- Panyukova, T.A. (2018). Chislennyye metody [Numerical methods]. Moskva: Gostekhizdat, 809 p. (in Russian).
- Vasil'yev, V.V., Simak, L.A. (2008). Drobnoye ischisleniye i approksimatsionnyye metody v modelirovanii dinamicheskikh system [Fractional calculus and approximation methods in modeling dynamic systems]. K.: NAN Ukrainy, 256 p. (in Russian).
- Marchuk, G.I. (2009). Metody vychislitel'noy matematiki [Methods of computational mathematics]. Lan', 608 p. (in Russian).
- Boglayev, YU.P. (2014). Vychislitel'naya matematika i programmirovaniye [Computational mathematics and programming]. M.: Vysshaya shkola, 544 p. (in Russian).
- Ryaben'kiy, V.S. (2018). Vvedeniye v vychislitel'nuyu matematiku [Introduction to Computational Mathematics]. M.: FIZMATLIT, 296 p. (in Russian).
- Cinlar, E., Robert, J. Vanderbei (2000). Mathematical methods of engineering analysis. 115 p.
- Riley, K.F., Hobson, M.P., Bence, S.J. (2006). Mathematical Methods for Physics and Engineering. New York: Cambridge university press, 1333 p.
Recommended Citation
Sagatov, Miraziz Vorisovich
(2023)
"SIMULATION OF MULTI-VARIABLE CONVERTERS USING THE LINEAR INTERPOLATION METHOD,"
Chemical Technology, Control and Management: Vol. 2023:
Iss.
6, Article 14.
DOI: https://doi.org/10.59048/2181-1105.1522