•  
  •  
 

Abstract

In this work, based on the theory of barycentric coordinates and simplexes, a linear interpolation method is proposed for modeling and controlling the operation of multiparameter converters. It has been determined that the linear interpolation method minimizes the structural diagram of a computing device, which makes it possible to more accurately determine the metrological characteristics of multiparameter measuring transducers and offer effective methods and means for processing primary measurement information. A theorem has been proven about a linear interpolating polynomial of a function of many variables, which will allow us to judge the property of linearization of multidimensional quantities from both qualitative and instrumental points of view, and a theorem that helps determine an accurate estimate of the interpolation error.

First Page

84

Last Page

90

References

  1. Kotyuk, A.F. (2007). Datchiki v sovremennykh izmereniyakh [Sensors in modern measurements]. Radio i svyaz', 96 p. (in Russian).
  2. Sagatov, M.V. (2002). Mathematical Modeling of Multiparameter Measuring Transducers. Second World Conference on Intelligent Systems for Industrial Automation (WCIS-2002), Tashkent, Uzbekistan, 190-193.
  3. Gulyamov, Sh.M., Sagatov, M.V., Sytnik, A.A. (2004). Mathematical modeling the multipleparameter measuring converters and optimization their metrological characteristics. 6th International Conference “Control Of Power Systems’04”, Slovak Republic. 1-5.
  4. Verlan', A.F., Sytnik, A.A., Sagatov, M.V. (2011). Metody matematicheskogo i komp'yuternogo modelirovaniya izmeritel'nykh preobrazovateley i sistem na osnove integral'nykh uravneniy [Methods of mathematical and computer modeling of measuring transducers and systems based on integral equations]. Tashkent: Fan, 344 p. (in Russian).
  5. Verzhbitskiy, V.M. (2002). Osnovy chislennykh metodov [Basic Numerical Methods]. M.: Vysshaya shkola. (in Russian).
  6. Sizikov, V.S. (2001). Matematicheskiye metody obrabotki rezul'tatov izmereniy [Mathematical methods for processing measurement results]. Sankt-Peterburg: Politekhnika, 240 p. (in Russian).
  7. Zaliznyak, V.Ye. (2013). Chislennyye metody. Osnovy nauchnykh vychisleniy [Numerical methods. Basics of Scientific Computing]. M.: Yurayt, 368 p. (in Russian).
  8. Mikheyev, S.Ye. (2013). Mnogomernaya approksimatsiya i interpolyatsiya [Multidimensional approximation and interpolation]. M.: Sankt-Peterburgskiy gosudarstvennyy universitet (SPbGU), 864 p. (in Russian).
  9. Panyukova, T.A. (2018). Chislennyye metody [Numerical methods]. Moskva: Gostekhizdat, 809 p. (in Russian).
  10. Vasil'yev, V.V., Simak, L.A. (2008). Drobnoye ischisleniye i approksimatsionnyye metody v modelirovanii dinamicheskikh system [Fractional calculus and approximation methods in modeling dynamic systems]. K.: NAN Ukrainy, 256 p. (in Russian).
  11. Marchuk, G.I. (2009). Metody vychislitel'noy matematiki [Methods of computational mathematics]. Lan', 608 p. (in Russian).
  12. Boglayev, YU.P. (2014). Vychislitel'naya matematika i programmirovaniye [Computational mathematics and programming]. M.: Vysshaya shkola, 544 p. (in Russian).
  13. Ryaben'kiy, V.S. (2018). Vvedeniye v vychislitel'nuyu matematiku [Introduction to Computational Mathematics]. M.: FIZMATLIT, 296 p. (in Russian).
  14. Cinlar, E., Robert, J. Vanderbei (2000). Mathematical methods of engineering analysis. 115 p.
  15. Riley, K.F., Hobson, M.P., Bence, S.J. (2006). Mathematical Methods for Physics and Engineering. New York: Cambridge university press, 1333 p.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.