•  
  •  
 

Abstract

A significant factor influencing climate change is the release of carbon dioxide (CO2) into the atmosphere as a consequence of human activities such as the combustion of fossil fuels. Climate change can be slowed down by taking action to mitigate industrial-scale CO2 emissions. Currently, the most advanced technology for capturing CO2 from industrial flue gases is the post-combustion CO2 capture based on amine absorption. However, due to the high energy penalties of existing CO2 capture technologies and insufficient carbon markets, it is necessary to develop methods that compete with these technologies or minimize their energy use. In this work, the absorption process is analyzed for the capture of CO2 in post-combustion flue gases using modelling and simulation methodology. Based on the outcomes of the simulation, the CO2 capture process demonstrates a noteworthy CO2 capture efficiency of 90%, yielding a high-purity CO2 output exceeding 98%.

First Page

11

Last Page

16

References

  1. Guo, B., et al. (2023). Rasterizing CO2 emissions and characterizing their trends via an enhanced population-light index at multiple scales in China during 2013–2019. Sci. Total Environ., 905, 167309, doi: 10.1016/j.scitotenv.2023.167309.
  2. Yoro, K.O., Daramola, M.O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. Advances in Carbon Capture, 3-28. doi: 10.1016/B978-0-12-819657-1.00001-3.
  3. Abbott, B.W. et al. (2022). We Must Stop Fossil Fuel Emissions to Protect Permafrost Ecosystems. Front. Environ. Sci., 10, 889428. doi: 10.3389/fenvs.2022.889428.
  4. Araújo, O.D.Q.F., Boa Morte, I.B., Borges, C.L.T., Morgado, C.R.V., De Medeiros, J.L. (2024). Beyond clean and affordable transition pathways: A review of issues and strategies to sustainable energy supply. Int. J. Electr. Power Energy Syst., 155, 109544. doi: 10.1016/j.ijepes.2023.109544.
  5. Turakulov, Z., Kamolov, A., Turakulov, A., Norkobilov, A., Fallanza, M. (2023). Assessment of the Decarbonization Pathways of the Cement Industry in Uzbekistan. ECP 2023, 2 p. doi: 10.3390/ECP2023-14639.
  6. Kamolov, A., et al. (2023). Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes, 13(2), 130 p. doi: 10.3390/membranes13020130.
  7. Léonard, G., Toye, D., Heyen, G. (2014). Assessment of Solvent Degradation within a Global Process Model of Post-Combustion CO2 Capture. Computer Aided Chemical Engineering, 33, 13-18. doi: 10.1016/B978-0-444-63456-6.50003-X.
  8. Voldsund, M. et al. (2019). Comparison of Technologies for CO2 Capture from Cement Production—Part 1: Technical Evaluation. Energies, 12(3), 559 p. doi: 10.3390/en12030559.
  9. Lv, B., Guo, B., Zhou, Z., Jing, G. (2015). Mechanisms of CO 2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol., 49(17), 10728-10735. doi: 10.1021/acs.est.5b02356.
  10. Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des., 89(9), 1609-1624. doi: 10.1016/j.cherd.2010.11.005.
  11. Darde, V., Thomsen, K., Van Well, W. J. M., Stenby, E.H. (2010). Chilled ammonia process for CO2 capture. Int. J. Greenh. Gas Control, 4(2), 131-136, 2010. doi: 10.1016/j.ijggc.2009.10.005.
  12. Novek, E.J., Shaulsky, E., Fishman, Z.S., Pfefferle, L.D., Elimelech, M. (2016). Low-Temperature Carbon Capture Using Aqueous Ammonia and Organic Solvents. Environ. Sci. Technol. Lett., 3(8), 291-296. doi: 10.1021/acs.estlett.6b00253.
  13. Faisal Elmobarak, W., Almomani, F., Tawalbeh, M., Al-Othman, A., Martis, R., Rasool, K. (2023). Current status of CO2 capture with ionic liquids: Development and progress. Fuel, 344, 128102. doi: 10.1016/j.fuel.2023.128102.
  14. Shukla, S.K., Khokarale, S.G., Bui, T.Q., Mikkola, J.-P.T. (2019). Ionic Liquids: Potential Materials for Carbon Dioxide Capture and Utilization. Front. Mater., 6, 42 p. doi: 10.3389/fmats.2019.00042.
  15. Rubin, E.S., Davison, J.E., Herzog, H.J. (2015). The cost of CO2 capture and storage. Int. J. Greenh. Gas Control, 40, 378-400. doi: 10.1016/j.ijggc.2015.05.018.
  16. Raksajati, A., Ho, M.T., Wiley, D.E. (2013). Reducing the Cost of CO2 Capture from Flue Gases Using Aqueous Chemical Absorption. Ind. Eng. Chem. Res., 52(47), 16887-16901. doi: 10.1021/ie402185h.
  17. Ho, M.T., Allinson, G.W., Wiley, D.E. (2011). Comparison of MEA capture cost for low CO2 emissions sources in Australia. Int. J. Greenh. Gas Control, 5(1), 49-60. doi: 10.1016/j.ijggc.2010.06.004.
  18. Strigle, R.F. (1994). Packed tower design and applications : random and structured packings, 2nd ed. Houston: Gulf Pub. Co. Houston.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.