•  
  •  
 

Abstract

This paper presents a smart system for early detection of wheat plant diseases in the vegetation period. The proposed smart system allows detecting three types of wheat diseases, particularly yellow rust, powdery mildew and septoria at early stage and significantly improves the soil and ecology by locally spraying harmful chemicals just to sickness plants. The proposed diagnostic program is created in the C++ programming language. The basic structure of the smart system consists of Raspberry PI 4 MODULE, Logitech HD Pro Webcam C920, buzzer, HC-SR04 distance sensor, DC motor driver, AC motor, power supply, relay and some digital devices.

First Page

38

Last Page

43

References

  1. Sulaymonov, B.A., Jumaev, R.A., Gazbekov, A.S. (2021). Qishloq xo‘jalik ekinlari zararli organizmlariga qarshi kurashish vositalari. “Аgrobank” АTB-2021.
  2. KHasanov, V.A. (2010). Qishloq kho'zhaligi o'simliklarining kasalliklari va ularga qarshi kurash choralari. Toshkent.
  3. Baratov, R., Valikhonova, Kh. (2021). Bug'doj o'simligi fiziologik ҳolatini o'lchash va nazorat qilish intellektual tizimini yaratishning fundamental asoslari. Agro ilm, 6[77], 12 p.
  4. «AGRO ILM» (2022). 2(76). O’zbekiston Qishloq Xo’jaligi Jurnali.
  5. Preskot, Dzh.M., Burnet, P.A., Sari, E.E., Ransom, Dzh. (2002). Bolezni i vrediteli pshenitsy [Wheat diseases and pests]. GTTS-Simmit. Almaty.
  6. Vignesh, M., Yogeswaran, A., Ragunath, S., Rohan Babu, D. (2021). Plant Disease Detection Robot. 2021 Int. Conf. Adv. Electr. Electron. Commun. Comput. Autom. ICAECA 2021, 1433-1435. doi: 10.1109/ICAECA52838.2021.9675776.
  7. Kalyani, G. et al. (2020). E-agrobot-a robot for early crop disease detection using raspberry pi. Int. J. Adv. Sci. Technol., 29(5), 3298-3309.
  8. Perera, L. (2020). A Smart Solution for Plant Disease Detection Based on IoT A Smart Solution for Plant Disease Detection Based on IoT.
  9. Rustam Baratov, Almardon Mustafoqulov (2023). Model of field robot manipulators and sensor for measuring angular displacement of its rotating parts. E3S Web of Conferences 401, 04006 (2023) CONMECHYDRO - 2023 https://doi.org/10.1051/e3sconf/202340104006
  10. Rustam Baratov, Almardon Mustafoqulov (2023). Smart angular displacement sensor for agricultural field robot manipulators. E3S Web of Conferences 386, 03008 (2023) GISCA 2022 and GI 2022. https://doi.org/10.1051/e3sconf/202338603008
  11. Baratov, R., Bon, T., Chulliyev, Y., Shoyimov, Y., Abdullayev, M. (2021). Modeling and simulation of water levels control in open canals using Simulink. IOP Conf. Ser. Earth Environ. Sci., 939(1). doi: 10.1088/1755-1315/939/1/012028.
  12. Baratov, R., Chulliyev, Y., Ruziyev, S. (2021). Smart system for water level and flow measurement and control in open canals. E3S Web Conf., 264, 1-8. doi: 10.1051/e3sconf/202126404082.
  13. Hassan, S.M., Maji, A.K., Jasiński, M., Leonowicz, Z., Jasińska, E. (2021). Identification of plant-leaf diseas. Electron., 10(12). doi: 10.3390/electronics101213.
  14. Rajendra, A.B., Rajkumar, N., Shetty, P.D. (2020). Areca Nut Disease Detection Using Image Processing. Adv. Intell. Syst. Comput., 1154(03), 925-931. doi: 10.1007/978-981-15-4032-5_83.
  15. Calantonea, R.J., Cavusgila, S.T., Zhaob, Y. (2002). Machine Translated by Google Machine Translated by Google. Artic. Investig. Científica, 31, 515-524.
  16. Kumar, V.V. (2018). Agricultural Robot: Leaf Disease Detection and Monitoring the Field Condition Using Machine Learning and Image Processing. Int. J. Comput. Intell. Res., 14(7), 551-561.
  17. Nikolenko, S.N., Kadurin, A.A., Arkhangel'skaya, E.V. (2018). Glubokoe obuchenie [Deep learning]. M.: Piter, 481 p. (in Russian).
  18. Boissard, P., Vincent Martin, Sabine Moisan (2010). A Cognitive Vision Approach to Early Pest Detection in Greenhouse Crops. Computers and Electronics in Agriculture, 62(2), 81-93.
  19. Krishnan, V., Scholar, G.P.G. (2019). Android Based Plant Disease Detection Using Arduino. 6(5), 139-142.
  20. Tutygin, V., Windi, A., Khalid, B., Ali, M., Ryabtsev, I. (2019). NETWORK.
  21. Kiruthiga, S., Rhaavin, K., Satheeshkumar, S., Vigneshkumaar, R. (2019). AN IOT BASED AUTOMATICLEAF DISEASE IDENTIFICATION AND CONTROLLING USING ARDUINO UNO. 1, 1021-1023.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.