•  
  •  
 

Abstract

Wide application of proportional-integral-differential (PID)-regulator in industry requires constant improvement of methods of its parameters superstructuring. In the paper, the questions of optimization of PID-regulator parameters with application of methods of neural network technology are considered. A methodology for selecting the architecture of neural network optimizer designed to determine the tuned parameters of PID regulator is proposed. The algorithm of training of the neural network, with the set on the basis of the method of inverse gradient propagation is offered. The proposed improved PID-neural regulator allowed to provide stabilization of neural network operation and its trainability in the control loop in real time. Neural network optimizer, is able to reconfigure the parameters of the PID-regulator during the transient process and provide the required quality of the transient process when varying the parameters of the object. The main changes of the proposed approach for neural network control of a dynamic object, is to develop a methodology for changing the speed and direction of training of the neural network, as well as the rules of training the output neurons of the neural network, which are the parameters of the PID-regulator. The results of computational experiments have shown that the created neural add-on in the form of a neurooptimizer can become a prototype of an industrial controller for tuning the parameters of the PID controller.

First Page

68

Last Page

75

References

  1. Hasan, M.W., Abbas, N.H. (2022). Disturbance Rejection for Underwater robotic vehicle based on adaptive fuzzy with nonlinear PID controller. ISA transactions. 130, 360-376. doi: 10.1016/j.isatra.2022.03.020
  2. Suid, M.H., Ahmad, M.A. (2022). Optimal tuning of sigmoid PID controller using Nonlinear Sine Cosine Algorithm for the Automatic Voltage Regulator system. ISA transactions. 128, 265-286. doi: 10.1016/j.isatra.2021.11.037
  3. Malarvili, S., Mageshwari, S. (2022). Nonlinear PID (N-PID) controller for SSSP grid connected inverter control of photovoltaic systems. Electric Power Systems Research. 1211, 108175. doi: 10.1016/j.epsr.2022.108175
  4. Peng Huang, Jundong Wu, Chun-Yi Su & Yawu Wang (2021). Tracking control of soft dielectric elastomer actuator based on nonlinear PID controller. International Journal of Control, 97:1, 130-140, doi: 10.1080/00207179.2022.2112088
  5. Kudinov, Y.I., Kolesnikov, V.A., Pashchenko, F.F., Pashchenko, A.F., Papic, L. (2017). Optimization of Fuzzy PID Controller’s Parameters, Procedia Computer Science, 103, 618–622. doi: 10.1016/j.procs.2017.01.086
  6. Siddikov, I., Porubay, O., Rakhimov, T. (2024). Synthesis of the neuro-fuzzy regulator with genetic algorithm. International Journal of Electrical and Computer Engineering (IJECE), 14(1), 184-191. doi: 10.11591/ijece.v14i1.pp184-191
  7. Lipi, K.A., Adrita, S.F.K., Tunny, Z.F., Munna, A.H., Kabir, A. (2022). Static-gesture word recognition in Bangla sign language using convolutional neural network. Telkomnika (Telecommunication Computing Electronics and Control), 20(5), 1109-1116. doi: 10.12928/telkomnika.v20i5.24096
  8. Vishesh, P., Raghavendra, S., Jankatti, S.K., Rekha, V. (2021). Eye blink detection using CNN to detect drowsiness level in drivers for road safety. Indonesian Journal of Electrical Engineering and Computer Science, 22(1), 222-231. doi: 10.11591/ijeecs.v22.i1.pp222-231
  9. Porubay, O., Siddikov, I., Madina, K. (2022). Algorithm for optimizing the mode of electric power systems by active power. 2022 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, 1-4, doi: 10.1109/ICISCT55600.2022.10146996
  10. Sarvari, S., Sani, N.F.M., Hanapi, Z.M., Abdullah, M.T. (2020). An efficient quantum multiverse optimization algorithm for solving optimization problems. International Journal of Advances in Applied Sciences, 9(1), 27-33. doi: 10.11591/ijaas.v9.i1.pp27-33
  11. Xakimovich, S.I., Dilnoza Maxamadjonovna, U. (2020). Synthesis of the Adaptive-fuzzy System Regulating the Temperature of Overheated Steam in Heat-electric Objects. 2020 International Conference on Information Science and Communications Technologies (ICISCT), 1-4. doi:10.1109/ICISCT50599.2020.9351406
  12. Sun, Xianghan, Ning Liu, Rui Shen, Kexin Wang, Zhijie Zhao, and Xianjun Sheng (2022). Nonlinear PID Controller Parameters Optimization Using Improved Particle Swarm Optimization Algorithm for the CNC System. Applied Sciences, 12(20). 10269. doi: 10.3390/app122010269
  13. Allaoua, B., Brahim, G., Mebarki, B. (2009). Setting up PID DC motor speed control alteration parameters using particle swarm optimization strategy. Leonardo Electronic Journal of Practices and Technologies, 14, 19-32. doi:10.2174/978160805126711201010003
  14. Fattah, D.A., Naim, A.A., Desuky, A.S., Zaki, M.S. (2022). AutoKeras and particle swarm optimization to predict the price trend of stock exchange. Bulletin of Electrical Engineering and Informatics, 11(2). 1100-1109. doi: 10.11591/eei.v11i2.3373
  15. Shi, X., Zhao, H., Fan, Z. (2023). Parameter optimization of nonlinear PID controller using RBF neural network for continuous stirred tank reactor. Measurement and Control. 56(9-10), 1835-1843. doi: 10.1177/00202940231189307
  16. Mok, R.H., Ahmad, M.A. (2022). Fast and optimal tuning of fractional order PID controller for AVR system based on memorizable-smoothed functional algorithm. Engineering Science and Technology, an International Journal. 35, 101264. doi: 10.1016/j.jestch.2022.101264
  17. Segovia, V.R., Hägglund, T. Åström, K.J. (2013). Noise filtering in PI and PID Control. 2013 American Control Conference, Washington, DC, USA, 1763-1770. doi: 10.1109/ACC.2013.6580091
  18. Song, Q., Ge, H., Caverlee, J., Hu, X. (2019). Tensor Completion Algorithms in Big Data Analytics. ACM Transactions on Knowledge Discovery from Data, 13(1), 1-48.
  19. Purnamasari, D., Bachrudin, K., Suryana, D.H., Robert, R. (2023). Classification of meat using the convolutional neural network. IAES International Journal of Artificial Intelligence, 12(4), 1845-1853. doi: 10.11591/ijai.v12.i4.pp1845-1853
  20. Mansouri, A., El Magri, A., El Myasse, I., Lajouad, R., Elaadouli, N. (2023). Backstepping nonlinear control of a five-phase PMSG aerogenerator linked to a Vienna rectifier. Indonesian Journal of Electrical Engineering and Computer Science, 32(2), 734-741. doi: 10.11591/ijeecs.v32.i2.pp734-741
  21. Kamaruddin, A.S., Hadrawi, M.F., Wah, Y.B., Aliman, S. (2023). An evaluation of nature-inspired optimization algorithms and machine learning classifiers for electricity fraud prediction. Indonesian Journal of Electrical Engineering and Computer Science, 32(1), 468-477. doi: 10.11591/ijeecs.v32.i1.pp468-477
  22. Dewi, I.A., Salawangi, M.A.N.E. (2023). High performance of optimizers in deep learning for cloth patterns detection. IAES International Journal of Artificial Intelligence, 12(3), 1407-1418. doi: 10.11591/ijai.v12.i3.pp1407-1418
  23. Mothkur, R., Nagendrappa, V.B. (2023). An optimal model for classification of lung cancer using grey wolf optimizer and deep hybrid learning. Indonesian Journal of Electrical Engineering and Computer Science, 30(1), 406-413. doi: 10.11591/ijeecs.v30.i1.pp406-413

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.