Abstract
This article proposes modern approaches to the problem of noise reduction in images using neural networks and also analyses the possibilities of noise reduction using neural networks. The convolutional neural network model and the Mediana, Sobel filter were considered for image denoising. The quality improvement of the trained neural network and the comparison with classical noise reduction methods have been carried out.
First Page
72
Last Page
77
References
- Bogush, R.P. (2009). Sifrovaya obrabotka signalov i izobrajeniy [Digital signal and image processing]. Novopolosk. PGU. 125 p. (in Russian).
- Shovengerdt, R.A. (2010). Distansionnoe zondirovanie. Metodi i modeli obrabotki izobrajeniy [Remote sensing. Image processing methods and models]. Moskva: Texnosfera. 560 p. (in Russian).
- Voskoboynikov, Yu.Ye., Gochakov, A.V., Kolker, A.B. (2010). Fil'tratsiya signalov i izobrajeniy: Fur'e i veyvlet algoritmi [Filtering signals and images: Fourier and wavelet algorithms]. 218 p. (in Russian).
- Metodi udaleniya shumov na izobrajeniyax na osnove primeneniya iskusstvennix neyronnix setey [Methods for removing noise from images based on the use of artificial neural networks] [Elektronniy resurs] url:https://www.lib.tpu.ru/fulltext/c/2010/C01/V2/ 170. pdf (data obrasheniya: 13.05.2019). (in Russian).
- Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, Lei Zhang Beyond a Gaussian Denoiser (2017). Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing. 26(7), 3142-3155.
- Roth, S., Black M.J. (2009). Fields of experts. International Journal of Computer Vision. 82(2), 205-229.
- Preobrazovanie Fur'e. Lineynaya fil'tratsiya v chastotnoy oblasti [Fourier transform. Linear filtering in the frequency domain] // http://wiki.technicalvision.ru URL:http://wiki.technicalvision.ru/index.php. (in Russian).
- Ipatov, A.A. (2016). Fil'tratsiya sifrovix izobrajeniy na osnove avtoenkodera [Autoencoder-based digital image filtering]. Sifrovaya obrabotka signalov. 3, 79-83. (in Russian).
- Gunturk, B.K., Altunbasak, Y., Mersereau, R.M. (2002). Color plane interpolation using alternating projections. IEEE transactions on image processing. 11(9). 997-1013.
- Belyaev, A.G., Gordon, M.Yu. (2020). Opredelenie glubini kolei na do roge na osnove dannix distansionnogo zondirovaniya [Determination of rut depth on a road based on remote sensing data]. Izvestiya visshix uchebnix zavedeniy. Stroitel'stvo, 9 (819), 14-19. (in Russian).
- Saidov, S., Usmanova, F. (2015). Metodi obrabotki kosmicheskix snimkov [Methods for processing satellite images]. Informasionnoe obshestvo, 1 (15), 91-96. (in Russian).
- Tyurin, I.E., Kabanov, S.A. (2019). Obrabotka i klassifikasiya izobrajeniy na osnove metodov mashinnogo obucheniya [Image processing and classification based on machine learning methods]. Vestnik Permskogo nasional'nogo issledovatel'skogo politexnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo, (18), 421-429.
- Kuznesov, M.A., Shaydurov, V.G., Kozodoeva, A.V. (2019). Metodi obnarujeniya i identifikasii ob'ektov na sputnikovix izobrajeniyax [Methods for detecting and identifying objects in satellite images]. Vestnik Krasnodarskogo universiteta MVD Rossii, 12(2), 136-143. (in Russian).
- Kopilov, A.V., Shestakov, A.A. (2019). Osenka tochnosti metoda detektirovaniya ob'ektov na sputnikovix izobrajeniyax [Assessing the accuracy of the method for detecting objects on satellite images]. Sistemi upravleniya i informasionnie texnologii, (2), 72-75.
Recommended Citation
Ravshanov, Anvar Asatilloyevich
(2024)
"USING A NEURAL NETWORK TO REMOVE NOISE FROM IMAGES,"
Chemical Technology, Control and Management: Vol. 2024:
Iss.
3, Article 10.
DOI: https://doi.org/10.59048/2181-1105.1587
Included in
Signal Processing Commons, Systems Engineering and Multidisciplinary Design Optimization Commons