•  
  •  
 

Abstract

This article presents a method for assessing the error of metrics of an intelligent system for monitoring and regulating the width of the working gap of the harvesting apparatus of a cotton picker. To assess the error, the calculation of the average value of the standard deviation of metrics, absolute systematic and random errors, as well as absolute and relative total errors are used. The results of these calculations will allow us to determine the accuracy of the recognition system and opportunities for its improvement.

First Page

13

Last Page

19

References

  1. Uljaev, E., Ubaydullaev, U., Abdulkhamidov, A. (2021). Analiz sovremennogo sostoyaniya avtomatizatsii kontrolya i regulirovaniya shiriny rabochikh shhelej uborochnogo apparata khlopkouborochnoj mashiny s vertikal'nym shpindelem [Analysis of the current state of automation of control and regulation of the width of the working strips of the harvesting apparatus of a cotton picker with a vertical spindle]. Mezhdunarodnoj nauchno-prakticheskoj konferentsii «Vyzovy nauki segodnya». Vashington, 48. 977-989. (in Russian).
  2. Uljaev, E., Abdazimov, A.D., Ravutov, SH.T., Tulbaev, F.A. (2011). Mikroprotsessornaya sistema kontrolya i regulirovaniya rabochej shheli khlopkouborochnogo apparata [Microprocessor system for monitoring and adjusting the working gap of a cotton picker]. Uzbekskij zhurnal «Problemy informatiki i ehnergetiki, (5), 48-52. (in Russian).
  3. Kasatkina, E.H.F. (2018). Obrabotka rezul'tatov izmerenij: Metrologiya, standartizatsiya, sertifikatsiya [Processing of measurement results: Metrology, standardization, certification]. Metodicheskie ukazaniya k prakticheskim zanyatiyam po distsipline. VlGU, 25 p. (in Russian).
  4. Bugaev, D.P., Kuzmin, M.I., Solovev, N.A. (2019). Kompyuternoe zrenie v zadachakh identifikatsii i raspoznavaniya poverkhnostnykh defektov tonkolistovogo prokata [Computer vision in problems of identification and recognition of surface defects in thin sheet metal]. Orenburg: Orenburgskij gos. un-t. 128 p. (in Russian).
  5. Naumenko, A.M., Ulitenko, V.P. (1982). Opredelenie pogreshnostej tekhnicheskikh izmerenij [Determination of technical measurement errors]. KHar'kov: KHAI, 131 p. (in Russian).
  6. Anakhov, V.YA. (2007). Pogreshnosti izmerenij i ikh otsenka [Measurement errors and their estimates]. Ekaterinburg, 69 p. (in Russian).
  7. Zhukov, V.K. (2009). Teoriya pogreshnostej tekhnicheskikh izmerenij [Theory of technical measurement errors]. Tomsk: Tomskij politekhnicheskij universitet. 180 p. (in Russian).
  8. Dedenko, L.G., Kerzhentsev, V.V. (1977). Matematicheskaya obrabotka i oformlenie rezul'tatov ehksperimenta [Mathematical processing and presentation of experimental results]. Izd-vo MGU, 112 p. (in Russian).
  9. Abdulhamidov, A., Uljaev, E. (2023). Opredelenie stepeni raskrytnosti khlopkovogo syr'ya s pomoshh'yu tekhnicheskogo zreniya [Determining the degree of openness of cotton raw materials using technical vision]. Zaregistrirovan v Gosudarstvennom reestre programmnykh produktov Respubliki Uzbekistan № DGU 23492. (in Russian).
  10. Uljaev, E., Ubaydullaev, U., Abdulhamidov, A. (2024). Nejronnye tekhnologii raspoznavaniya i klassifikatsiya stepeni raskrytiya khlopkovykh korobochek [Neural technologies for recognition and classification of degrees of opening of cotton bolls]. Al'-Fargonij avlodlari, 1(1), 69-79. (in Russian).
  11. Abdulhamidov, A., Uljaev, E. (2022). Vybor kamery dlya raspoznavaniya khlopka-syrtsa i analiza ego osnovnykh parametrov [Selecting a camera for recognizing raw cotton and analyzing its main parameters]. V 2022 godu Mezhdunarodnaya konferentsiya po informatsionnym naukam i kommunikatsionnym tekhnologiyam (ICISCT), 1-4. (in Russian).
  12. Vibrozashhitnaya platforma [Vibration-proof platform]. // https://www.nic-tech.ru/catalog/dopolnitelnye_assortiment/vibrozashchitnaya_platforma/ (data obrashheniya: 16.03.2024). (in Russian).
  13. Uljaev, E., Abdulhamidov, A. (2023). Preobrazovanie videoizobrazheniya v matritsu, otsenka i vybor kachestvennykh algoritmov [Converting a video image into a matrix, evaluating and selecting quality algorithms]. ZHurnal «Pribory», 6. 21-25. (in Russian).
  14. Mirzaev, N.M., Radzhabov, S.S., Zhumaev, T.S. (2008). O parametrizatsii modelej algoritmov raspoznavaniya, osnovannykh na otsenke vzaimosvyazannosti priznakov [On the parameterization of models of recognition algorithms based on the assessment of the relationship of signs]. Problemy informatiki i ehnergetiki, (2-3), 23-27. (in Russian).
  15. Uljaev, E., Ubaydullaev, U., Abdulhamidov, A. (2024). Programmnoe obespichenie ustrojstva regulirovaniya rabochej shheli uborochnogo apparata khlopkouborochnoj mashiny [Software for the device for adjusting the working gap of the harvesting apparatus of a cotton picker]. Zaregistrirovan v Gosudarstvennom reestre programmnykh produktov Respubliki Uzbekistan № DGU 35890. (in Russian).
  16. Uljaev, E., Abdulhamidov, A., Ubaydullaev, U. (2023). Svertochnaya nejronnaya set' dlya klassifikatsii stepeni otkrytiya khlopkovoj korobochki [Convolutional neural network for classifying the opening degree of a cotton box]. Al'-Fargonij avlodlari. 4(1), 31-36. (in Russian).
  17. Abdulhamidov, A. (2023). Otsenki proizvoditel'nosti svyortochnoj nejronnoj seti dlya klassifikatsii khlopka po stepeni raskrytiya [Performance evaluations of a candle neural network for classifying cotton by degree of opening]. ZHurnal «Pribory», 9. 51-55. (in Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.