•  
  •  
 

Abstract

A mathematical machine learning model for dental disease diagnosis plays an important role in medicine with high accuracy, speed, and personalization capabilities. This allows for increased efficiency not only for patients but also for medical personnel. For this reason, in this article, an improved mathematical model has been developed to effectively detect dental diseases.

First Page

86

Last Page

92

References

1. Tian, S., Dai, N., Zhang, B., Yuan, F., Yu, Q., Cheng, X. (2019). Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. IEEE Access. 7, 84817-84828. doi: 10.1109/ACCESS.2019.2924262.

2. Megalan, L.L., Kalapalatha, R.T. (2021). Learning compact and discriminative hybrid neural network for dental caries classification. Microprocessors and Microsystems. 82. doi: 10.1016/j.micpro.2021.103836.103836

3. Koundal, D., Gupta, S., Singh, S. (2016). Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set. Applied Soft Computing. 40, 86-97. doi: 10.1016/j.asoc.2015.11.035.

4. Aggarwal, S., Gupta, S., Alhudhaif, A., Koundal, D., Gupta, R., Polat, K. (2021). Automated COVID‐19 detection in chest X‐ray images using fine‐tuned deep learning architectures. Expert Systems. 39(3). doi: 10.1111/exsy.12749.

5. Shah, N. (2014). Recent advances in imaging technologies in dentistry. World Journal of Radiology.6(10), 794-807. doi:10.4329/wjr.v6.i10.794.

6. Masic, F. (2012). Information systems in dentistry. Acta Informatica Medica. 20(1), 47-55. doi: 10.5455/aim.2012.20.47-55.

7. Nair, R., Alhudhaif, A., Koundal, D. (2021). Deep learning-based COVID-19 detection system using pulmonary CT scans. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES. 29(SI-1), 2716-2727. doi: 10.3906/elk-2105-243.

8. Niazi, M.K.K., Parwani, A.V., Gurcan, M.N. (2019). Digital pathology and artificial intelligence. The Lancet Oncology. 20(5), e253–e261. doi: 10.1016/S1470-2045(19)30154-8.

9. Vishwakarma, S.K., Verma, S.S., Nair, R., Roy, V., Agrawal, A. (2021). Detection of sleep apnea through heart rate signal using convolutional neural network. International Journal of Pharmaceutical Research. 12(4).

10. Yılmaz, H., Keleş, S. (2018). Recent methods for diagnosis of dental caries in dentistry. Meandros Medical and Dental Journal. 19(1), 1-8. doi: 10.4274/meandros.21931.

11. Bhalla, K., Koundal, D., Bhatia, S., Khalid, Imam Rahmani M., Tahir, M. (2022). Fusion of infrared and visible images using fuzzy based siamese convolutional network. Computers, Materials & Continua. 70(3), 5503-5518. doi: 10.32604/cmc.2022.021125.

12. Singh, P., Kaur, R. (2020). An integrated fog and Artificial Intelligence smart health framework to predict and prevent COVID-19. Global transitions. 2. 283-292. doi: 10.1016/j.glt.2020.11.002.

13. Singh, P., Kaur, R. (2021). Implementation of the QoS framework using fog computing to predict COVID-19 disease at early stage. World Journal of Engineering. 19(1), 80-89. doi: 10.1108/wje-12-2020-0636.

14. Jader, G., Fontineli, J., Ruiz, M., Abdalla, K., Pithon, M., Oliveira, L. (2019). Deep instance segmentation of teeth in panoramic X-ray images. Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). Parana, Brazil.

15. Muramatsu, C. (2021). Tooth detection and classification on panoramic radiographs for automatic dental chart filing: improved classification by multi-sized input data. Oral Radiology. 37(1), 13-19. doi: 10.1007/s11282-019-00418-w.

16. Miki, Y., Muramatsu, C., Hayashi, T., (2017). Classification of teeth in cone-beam CT using deep convolutional neural network. Computers in Biology and Medicine. 80. 23-29. doi: 10.1016/j.compbiomed.2016.11.003.

17. Kawai, T., (2019). Deep learning-based detection of prosthetic, healthy, and fill-in regions in dental X-ray images. IEEE Transactions on Medical Imaging. 38(12), 2842-2851.

18. Rakhimov, M., Akhmadjonov, R., Javliev, Sh. (2022). Artificial Intelligence in Medicine for Chronic Disease Classification Using Machine Learning. IEEE 16th International Conference on Application of Information and Communication Technologies (AICT). 1-6. DOI: 10.1109/AICT55583.2022.10013587.

19. Rakhimov, M., Karimberdiyev, J., Javliev, S. (2024). Artificial Intelligence in Medicine: Enhancing Pneumonia Detection Using Wavelet Transform. In: Choi, B.J., Singh, D., Tiwary, U.S., Chung, WY. (eds) Intelligent Human Computer Interaction. IHCI 2023. Lecture Notes in Computer Science, 14531. Springer, Cham. https://doi.org/10.1007/978-3-031-53827-8_16

20. Rakhimov, M. (2022). Algorithm for Parallel Processing of a Speech Signal based on the Haar Wavelet. 2022 International Conference on Information Science and Communications Technologies (ICISCT). Tashkent, 1-4. doi: 10.1109/ICISCT55600.2022.10146906.

21. Musaev, M., Rakhimov, M. (2020). Accelerated Training for Convolutional Neural Networks. 2020 International Conference on Information Science and Communications Technologies (ICISCT). Tashkent, 1-5, doi: 10.1109/ICISCT50599.2020.9351371.

22. Nasimov, R., Rakhimov, M., Javliev, S., Abdullaeva, M. (2024). Parallel Approaches to Accelerate Deep Learning Processes Using Heterogeneous Computing. In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2023 2023. Lecture Notes in Computer Science, 14543. Springer, Cham. https://doi.org/10.1007/978-3-031-60997-8_4

23. Rakhimov, M., Javliev, Sh., Nasimov, R. (2024). Parallel Approaches in Deep Learning: Use Parallel Computing. In Proceedings of the 7th International Conference on Future Networks and Distributed Systems (ICFNDS '23). Association for Computing Machinery, New York, NY, USA, 192-201. https://doi.org/10.1145/3644713.3644738

24. Abdullaeva, M.I., Juraev, D.B., Ochilov, M.M., Rakhimov, M.F. (2023). Uzbek Speech Synthesis Using Deep Learning Algorithms. In: Zaynidinov, H., Singh, M., Tiwary, U.S., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2022. Lecture Notes in Computer Science, 13741. Springer, Cham. https://doi.org/10.1007/978-3-031-27199-1_5

25. Abdusalomov, A.B., Safarov, F., Rakhimov, M., Turaev, B., Whangbo, T.K. (2022). Improved Feature Parameter Extraction from Speech Signals Using Machine Learning Algorithm. Sensors. 22, 8122. https://doi.org/10.3390/s22218122

26. Rakhimov, M., Elov, J., Khamdamov, U., Aminov, S., Javliev, S. (2021). Parallel Implementation of Real-Time Object Detection using OpenMP. 2021 International Conference on Information Science and Communications Technologies (ICISCT). Tashkent, 1-4. doi: 10.1109/ICISCT52966.2021.9670146.

27. George, J., Hemanth, T., Raju, J., Mattapallil, J., Naveen, N. (2023). Dental Radiography Analysis and Diagnosis using YOLOv8. 102-107. 10.1109/ICSCC59169.2023.10335023.

28. Mohan, R., Arunmozhi, R., Rajinikanth, V. (2023). Deep-Learning Segmentation and Recognition of Tooth in Thresholded Panoramic X-ray. 1-5.10.1109/WiSSCoN56857.2023.10133861.

29. Thulaseedharan, A., PS,L.P. (2022). Deep Learning based Object Detection Algorithm for the Detection of Dental Diseases and Differential Treatments. In 2022 IEEE 19th India Council International Conference (INDICON). 1-7.

30. Khdier, H., Jasim, W., Aliesawi, S. (2021). Deep Learning Algorithms based Voiceprint Recognition System in Noisy Environment. Journal of Physics: Conference Series.

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.