Abstract
This article is dedicated to developing a generalized structural-parametric conceptual model of the electromagnetic mechatronic module. The design of a mechatronic module based on an electromagnetic linear motor, which performs reciprocating movements in space along different coordinates simultaneously, is presented. This module is used to enhance the functional capabilities of mechatronic systems and robotic complexes employed in modern automotive, textile, mining, metallurgy, and energy industries. It also serves to improve technical characteristics such as operational accuracy and speed. Based on this design, a computational scheme has been constructed using a van-equivalent T-shaped four-pole circuit model of the mechatronic module. It corresponds to the forces generated by the reciprocating movements of the electromagnetic linear motor’s anchor, which forms the core of the mechatronic module. The use of Laplace transformation methods has been proposed to represent these forces. Based on the proposed four-pole equivalent circuit model, it has been developed. The generalized structural-parametric conceptual model enables the determination of the transfer functions in controlling the electromagnetic mechatronic module. It also allows the use of automatic control theory methods to calculate the dynamic and static electromechanical characteristics necessary for managing reciprocating movements. Additionally, based on the structural-parametric conceptual model, the mathematical foundations for determining and mitigating the effects of the geometric and physical parameters of the electromagnetic mechatronic module, as well as external factors, on its dynamic characteristics are provided. Also, on the basis of the structural-parametric conceptual model, the geometric and physical parameters of the electromagnetic mechatronic module and the influence of external factors on the dynamic characteristics and their elimination, as well as the mathematical foundations of ensuring the continuity of forward-reciprocating movements in different coordinates in space, are presented.
First Page
92
Last Page
99
References
1. Glazunov, V.A. (2018). Novye mehanizmy v sovremennoj robototehnike [New mechanisms in modern robotics]. M.: Tehnosfera, 316 p. (in Russian).
2. Afonin, V.L. (2006). Obrabatyvajushhee oborudovanie na osnove mehanizmov parallel'noj struktury [Processing equipment based on parallel structure mechanisms]. M.: MGTU STANKIN, 452 p. (in Russian).
3. Afonin, S.M. (2000). Raschet staticheskih i dinamicheskih harakteristik p'ezodvigatelja nanoperemeshhenij [Calculation of static and dynamic characteristics of a nano-displacement piezoelectric motor]. Pribory i sistemy. Upravlenie, kontrol', diagnostika. 7.
4. Jurevich, E.I. (2005). Osnovy robototehnika [Fundamentals of robotics]. SPB PHV Peterburg, 416 p. (in. Russian),
5. The Anh Tuan Dang, Magali Bosch-Mauchand, Neha Arora, Christine Prelle, Joanna Daaboul (2016). Electromagnetic modular Smart Surface architecture and control in a microfactory context. Computers in Industry, 81, 152-170.
6. Egorov, O.D., Poduraev, Ju.V. (2004). Konstruirovanie mehatronnyh modulej [Design of mechatronic modules]. M.: MGTU STANKIN, 360 p. (in Russian).
7. Angeles, J. (2014). Fundamentals of Robotic Mechanical Systems. Theory, Methods, Algorithms. Springer, New York.
8. Nazarov, Kh.N. (2019). Intellektualnye mnogokoordinatnye mehatronnye moduli robototehnichesih sistem [Intelligent multi-coordinate mechatronic modules of robotic systems]. Toshkent: Mashhur-Press, 143 p. (in Russian).
9. Yusupbekov, N.R., Matyokubov, N.R., Rakhimov, T.O. (2024). Electromagnetic mechatron module control algorithm based on linear performance element of industrial robots. AIP Conference Proceedings, 3119(1), 060012. https://doi.org/ 10.1063/5.0214843.
10. Matyokubov, N.R., Rakhimov, T.O. (2024). Group Control of Functional Linear Actuation Elements of Mechatronic Modules. Transactions of the Korean Institute of Electrical Engineers, 73(06). https://doi.org/10.5370/KIEE.2024.73.6.995
11. Brodovskij, V.N., Baranov, M.V., Iljuhin, Ju.V. (2000). Mehatronnyj privodnoj modul' postupatel'nogo peremeshhenija dlja tehnologicheskih mashin [Mechatronic drive module for translational movement of technological machines]. Mehatoonika. 4. (in Russian).
12. Siddikov, I., Rakhimov, T. (2024). Parametric optimization of a multi-output electromagnetic mechatron module. E3S Web of Conferences, 508, 01008. https://doi.org/10.1051/e3sconf/202450801008
13. Matyokubov, N.R., Rakhimov, T.O. (2022). Structural-Mode Graphs of Electromagnetic and Mechatronic Modules of Intelligent Robots. 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022). https://doi.org/10.1007/978-3-031-53488-1_30
14. Iljuhina, N.S., Frolov, A.A., Beleckaja, L.V. (2011). Issledovanie staticheskih i dinamicheskih harakteristik jelektromagnitnyh rulevyh privodov [Study of static and dynamic characteristics of electromagnetic steering drives]. Izvestija TulGTU. Tehnicheskie nauki. 5(1). (inRussian).
15. Gosiewski, Z., Kondratiuk, M. (2009). Selection of Coils Parameters in Magnetic Launchers. Solid State Phenomena. 147–149, 438-443.
16. Matyokubov, N.R., Rakhimov, T.O. (2023). Mathematical Model of An Industrial Robot Built on The Basis of Linear Motion Mechatron Modules. Сhemical technology control and management. 4(112), 37-42. DOI:10.59048/2181-1105.1481.
17. Matyokubov, N.R., Rakhimov, T. (2023). Principles For Constructing Mechatron Modules Based on Electromagnetic Linear Execution Elements of Intelligent Robot. Acta of Turin Polytechnic University in Tashkent. 13(2), 49-53.
18. Krzysztof, J., Paweł, P. (2018). Static analysis of the tubular electromagnetic linearactuator with permanents magnets. Scientific Journal of Polish Naval Academy Zeszyty Nauko We Akademii Marynarki Wojennej (LIX). 2(213). DOI: 10.2478/sjpna-2018-0015.
19. Ristic-Djurovic, J.L., Gajic, S.S., Ilic, A.Z. (2018). Design and Optimization of Electromagnets for Biomedical Experiments With Static Magnetic and ELF Electromagnetic Fields. IEEE Transactions On Industrial Electronics, 65(6), 4991–5000.
20. Arhipova, E.V., Russova, N.V., Svincov, G.P. (2013). Usovershenstvovannaja metodika proektnogo rascheta bronevyh jelektromagnitov postojannogo naprjazhenija s vnedrjajushhimisja jakorjami [Improved method of design calculation of DC armoured electromagnets with insertion anchors]. Vestnik Chuvashskogo universiteta, 3, 156-161. (in Russian).
Recommended Citation
Matyokubov, N.R. and Rakhimov, T.O.
(2024)
"GENERALIZED STRUCTURAL-PARAMETRIC CONCEPTUAL MODEL OF THE ELECTROMAGNETIC MECHATRONIC MODULE,"
Chemical Technology, Control and Management: Vol. 2024:
Iss.
5, Article 15.
DOI: https://doi.org/10.59048/2181-1105.1635