•  
  •  
 

Abstract

This article is devoted to neural network models of adaptive position-trajectory control systems of moving objects. Neural network models of adaptive positional-trajectory control systems of moving objects have been developed on the basis of proportional-differential adjusters, which allow for quick calculation and determination of nonlinear characteristics of the system. Also, the kinematic scheme of the multi-link industrial robot is presented for describing the motion of the multi-link industrial robot according to the specified traction and positions, and for representing the input forces and training in the neural network. Mathematical models for calculating the linear and rotational movements of the manipulator handle in the x and y coordinate positions and directions are presented. The presented kinematic scheme and mathematical models serve to develop the structure of adaptive position-trajectory control systems of multi-link industrial robot manipulator based on neural network models. In the control structure, the two-layer model of the neural network allows calculation of tracking errors and moments in the specified coordinate trajectory, individual control of each link based on the signals received from the position sensor of the links, and visualization based on computer technologies.

First Page

143

Last Page

149

References

1. Lewis, F.L., Jagannathan, S., Yesildirek, A. (1999). Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor & Francis Ltd, 1 Gunpowder Square, London, EC4A 3DE Taylor & Francis Inc., 325 Chestnut Street, Philadelphia PA 1910. 460 p.

2. Ioannou, P.A., Sun, J. (1996). Robust Adaptive Control. Prentice-Hall, New Jersey.

3. Makarov, I.M. (2001). Intellektualnie sistemiy avtomaticheskogo upravleniya [Intelligent automatic control systems]. M.: FIZMATLIT, 576 p. (in. Russian).

4. Yusupbekov, A.N., Sevinov, J.U., Mamirov, U.F., Botirov, T.V. (2021). Synthesis Algorithms for Neural Network Regulator of Dynamic System Control. Advances in Intelligent Systems and Computing, 1306. 723-730. Springer, Cham. https://doi.org/10.1007/978-3-030-64058-3_90.

5. Zenkivich, S.L., Jushhenko A.S. (2000). Upravlenija robotami. osnovy upravlenija manipuljacionnymi robotami [Robot control. basics of manipulating robots control]. Moscow: MGTU im. N.Je.Baumana, 400 p. (in. Russian).

6. Glazunov, V.A. (2018). Novye mehanizmy v sovremennoj robototehnike [New mechanisms in modern robotics]. Moscow: TEHANOSFERA, 316 p. (in. Russian).

7. Pol, R. (1986). Modelirovanie, planirovanie traektrorij i upravlenie dvizheniem robota-manipuljatora [Modeling, trajectory planning and motion control of a robotic arm]. M.: Nauka, 103 p. (in. Russian).

8. Nazarov, H.N. (2019). Intellektual'nye mnogokoordinatnye mehatronnye moduli robototehnicheskih sistem [Intelligent multi-coordinate mechatronic modules of robotic systems]. Toshkent: Mashhur-Press. 143 p. (in. Russian).

9. Yusupbekov, N.R. i dr. (2015). Intellektualnie sistemi upravleniya i prinyatie resheniy [Intelligent management and decision-making systems]. Tashkent: Izdatelstvo Natsionalnoy ensiklopedii Uzbekistana, 572 p. (in. Russian).

10. Tadzhiev, H.H. Sevinova, D.U. (2018). Algoritmy adaptivnyh pozicionno-traektoryh sistem upravlenija podvizhnymi obektami [Algorithmic adaptive position-trajectory system control of movement object]. In: Rol' intellektual'noj molodezhi v razvitii nauki i tehniki, Sbornik dokladov respublikanskoj nauchno - tehnicheskoj konferencii. TashGTU, Tashkent, 31-33.

11. Zaripov, O.O., Sevinova, D.U., Bobojanov, S.G. (2024). Adaptive Posision-Determination and Dynamic Model Properties Synthesis of Moving Objects With Trajectory Control System (In the Case of Multi-Link Manipulators). Transactions of the Korean Institute of Electrical Engineers. 73(3), 576-584.

12. Zaripov, O.O., Sevinova, D.U. (2023). Structural and Kinematic Synthesis Algorithms of Adaptive Position-Trajectory Control Systems (In the Case of Assembly Industrial Robots). ICoRSE 2023, LNNS 762, 1-16, 2023. https://doi.org/10.1007/978-3-031-40628-7_50.

13. Zaripov, O.O., Sevinova, D.U. (2023). Method For Solving The Kinematics Inverse Problem For Moving Along A Trajectory Objects (As An Example Of Assembly Industrial Robots). Сhemical technology control and management, 1(109). 24-29.

14. Macfarlane, S., Croft, E. (2003). Jerk-bounded manipulator trajectory planning design for real-time applications. IEEE Trans. on Robot. Autom. 19, 42-52.

15. Zaripov, O.O., Sevinova, D.U., Sevinov I.U. (2020). Synthesis Algorithms for Adaptive Process Control Systems Based on Associative Memory Technology. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 9(2), 38-42. DOI: 10.35940/ijitee.A4745.129219.

16. Zaripov, O.O., Sevinova, D.U. (2024). Algorithm of Adaptive Cyclic Control of Position-Trajectory Moving Objects (In the Case of An Industrial Robot manipulator). Technical science and innovation. 3(9). DOI: https://doi.org/10.59048/2181-0400

17. Igamberdiyev, H.Z., Sevinov, J.U., Xusanov, S.N. (2023). Cоntrоllеrs synthеsis algоrithms in thе соnstruсtiоn of disсrеtе соntrоl systеms fоr tесhnоlоgiсаl оbjесts. ICoRSE 2023, LNNS 762, 426-439. https://doi.org/10.1007/978-3-031-40628-7_36

18. Sevinov, J.U., Abdishukurov, Sh.M., Bobomurodov, N.X. (2023). Synthesis problem of adaptive control systems for multi-channel and multi-mode objects. Chemical Technology, Control and Management. 5(10). 57-63. DOI: https://doi.org/10.59048/2181-1105.1508.

19. Yusupbekov, N., Bobomurodov, N., Sevinov, J. (2023). Mathematical modeling and control the process of fuel combustion in gas combustion furnaces. E3S Web of Conferences 431, 02027 (2023), ITSE-2023. https://doi.org/10.1051/e3sconf/202343102027

20. Sevinov, J.U., Boborayimov, O.K., Bobomurodov, N.H. (2024). Algorithms for Synthesis of Adaptive Neural Network Control Systems Based on the Velocity Gradient Method. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M. (eds) 16th International Conference on Applications of Fuzzy Systems, Soft Computing and Artificial Intelligence Tools – ICAFS-2023. ICAFS 2023. Lecture Notes in Networks and Systems, 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-76283-3_34

21. Abdurakhmanova, Y.M., Sevinov, J.U. (2021). Algorithms to Synthesis for Adaptive Sub-Optimal Control of Dynamic Objects Based on Regular Methods. 2021 International Conference on Information Science and Communications Technologies (ICISCT), 1-3, doi: 10.1109/ICISCT52966.2021.9670234.

22. Putov, V.V. (2003). Razvitie bespoiskovyh adaptivnyh metodov i ih prilozhenija k zadacham upravlenija slozhnymi mehanicheskimi ob’ektami [Development of bespoke Adaptive Methods and their inclusion to the task of managing complex mechanical objects]. Aviakosmicheskoe priborostroenie. 6. 31-42. (in. Russian).

Included in

Engineering Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.