•  
  •  
 

Abstract

This article is devoted to the principles and models of building linear motion actuators with holonomic structure for the movement of intelligent robots. Also, the classification of the elements of the linear movement performance according to their interconnections and technical characteristics, taking into account their physical characteristics, was seen. A morphological matrix of the construction of holonomic structured linear motion performance elements based on the classification according to the considered technical specifications is presented. The given morphological matrix of linear motion actuators serves to develop new actuators for intelligent mechatronic and robotic systems. Based on the morphological matrix of the classification of the technical specifications of the linear motion performance elements and their construction, the mathematical models of the interconnection of electrical, magnetic and mechanical parts and the description of the physical level are presented. Including the graph connections of structural linear motion execution elements and the structures of their main components are considered. Also, graph models are the basis for expressing the dynamic properties of linear motion performance elements, as well as ensuring the interrelationship of physical quantities. The given morphological and graph models represent all possible principles of linear movement execution elements at the physical level and allow designing execution mechanisms of intelligent mechatronic and robotic systems.

First Page

36

Last Page

43

References

  1. Kuz'min, D.V. (2008). Modelirovanie dinamiki mehatronnyh sistem. Upravlenija i algoritmy [Simulation of dynamics of mechatronic systems. Controls and algorithms]. Arhangel'sk: Arhang. gos. tehn. un-t, g. 120 p. (in Russian).
  2. Yusupbekov, N.R., Yusupbekov, A.N., i drugie. (2015). Intellektualnie sistemi upravleniya i prinyatie resheniy [Intelligent management and decision-making systems]. Tashkent: Izdatelstvo Natsionalnoy ensiklopedii Uzbekistana, 572 p. (in Russian).
  3. Nazarov, Kh.N. (2019). Intellektualnye mnogokoordinatnye mehatronnye moduli robototehnichesih sistem [Intelligent multi-coordinate mechatronic modules of robotic systems]. Toshkent: Mashhur-Press, 143 p. (in Russian).
  4. Afonin, A.A. (1986). Jelektromagnitnyj privod robototehnicheskih system [Electromagnetic drive of robotic systems]. Kiev: Nauk, 272 p. (in Russian).
  5. Krutko, P.D. (1991). Upravlenie ispolnitel'nymi sistemami robotov [Control of robot executive systems]. M.: Nauka, 281 p. (in Russian).
  6. Kurbatov, P.A. (2007). Matematicheskie modelirovanie jelektromehanicheskih sistem jelektricheskih apparatov [Mathematical modeling of the electromechanical system of electrical devices]. M.: Izd. Dom MJeI, 110 p. (in Russian).
  7. Gotlib, B.M. (2007). Proektirovanie mehatronnyh sistem. Ch1. Informacionnoe obespechenie processa proektirovanija mehatronnyh sistem [Design of mechatronic systems. Ch1. Information support for the process of designing mechatronic systems]. Ekaterinburg: UrGUPS, 115 p. (in Russian).
  8. Goncharov, V.I., Peters, D.P., Vadutov,a F.A. (2207). Proektirovanie ispolnitel'nyh sistem robotov [Designing an executive system of robots]. Tomsk: Izd-vo TPU, 96 p. (in Russian).
  9. Matyokubov, N.R., Rakhimov, T.O. (2023). Mathematical Model of An Industrial Robot Built on The Basis of Linear Motion Mechatron Modules. Сhemical technology control and management. 4(112), 37-42. DOI:10.59048/2181-1105.1481.
  10. Matyokubov, N.R., Rakhimov, T. (2023). Principles For Constructing Mechatron Modules Based on Electromagnetic Linear Execution Elements of Intelligent Robot. Acta of Turin Polytechnic University in Tashkent. 13(2), 49-53.
  11. Matyokubov, N.R., Rakhimov, T.O. (2024). Group Control of Functional Linear Actuation Elements of Mechatronic Modules. Transactions of the Korean Institute of Electrical Engineers, 73(06). https://doi.org/10.5370/KIEE.2024.73.6.995
  12. Yusupbekov, N.R., Matyokubov, N.R., Rakhimov, T.O. (2024). Electromagnetic mechatron module control algorithm based on linear performance element of industrial robots. AIP Conference Proceedings, 3119(1), 060012. https://doi.org/ 10.1063/5.0214843.
  13. Yusupbekov, A. N., Nazarov, Kh. N., Matyokubov, N.R., Rakhimov, T.O. (2020). Conceptual bases of modeling multi-cordinate mechatronic robot modules. Сhemical technology control and management, 4(94), 10-15.
  14. Matyokubov N.R., Rakhimov T.O. Structural-Mode Graphs of Electromagnetic and Mechatronic Modules of Intelligent Robots. 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022), https://doi.org/10.1007/978-3-031-53488-1_30
  15. Matyokubov, N.R., Rakhimov, T.O. (2024). Generalized structural-parametric conceptual model of the electromagnetic mechatronic module. Сhemical technology control and management, 5-6, 92-99.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.