•  
  •  
 

Abstract

The article discusses modern methods for developing intelligent measuring systems. Intelligent measuring systems are systems based on intelligent technologies that not only accurately measure physical or chemical quantities, but also have the ability to self-analyze, diagnose and make management decisions. The article comprehensively examines the architecture, components of such systems, the organization of their software and hardware, the relationship of sensors and artificial intelligence algorithms. It also analyzes the practical application and prospects of intelligent measuring systems in such areas as industry, medicine, energy, ecology, transport.

First Page

45

Last Page

50

References

  1. Smutný, L. (2003). Intelligent measurement, diagnostic and control systems. Acta Montanistica Slovaca, 8(4), 156–158.
  2. Tyzhnenko, D. A., Vasilyeva, A. V., Valov, P. M., & Potekhin, V. V. (2014). Intelligent informational-measuring system for monitoring and optimization of power consumption. Mathematical Modelling: Methods, Algorithms, Technologies. St. Petersburg State Polytechnical University Journal: Computer Science, Telecommunications and Control Systems, 1(188), 83–90.*
  3. Gaskarov, D. V. (2003). Intellektual’nye informatsionnye sistemy [Intelligent information systems]. Moscow: Vysshaya Shkola.
  4. Viharos, Z. J., & Kis, K. B. (2015). Survey on neuro-fuzzy systems and their applications in technical diagnostics and measurement. Measurement, 67, 126–136. https://doi.org/10.1016/j.measurement.2015.01.028
  5. Lin, C. L., & Su, H. W. (2000). Intelligent control theory in guidance and control system design: An overview. Proceedings of the National Science Council ROC (A), 24(1), 15–30.
  6. Myl’nikov, L. A. (2009). Mikroprotsessornye sistemy sbora i obrabotki dannykh dlya avtomatizatsii kontrolya bystroizmenyayushchikhsya parametrov tekhnologicheskikh protsessov [Microprocessor-based data acquisition and processing systems for automation of control of rapidly changing parameters of technological processes]. Perm: PGTU Publishing.
  7. Selivanova, Z. M. (2024). Intellektual’nye informatsionno-izmeritel’nye sistemy: uchebnoe posobie [Intelligent information-measuring systems: A textbook]. Tambov: TSTU Publishing.
  8. Mansurov, Sh. M., & Aliev, A. A. (2021). Intellektual’nye izmeritel’nye sistemy: printsipy postroeniya i primeneniya [Intelligent measuring systems: Principles of design and application]. Tashkent: Fan Publishing.
  9. Cai, Y., Genovese, A., Piuri, V., Scotti, F., & Siegel, M. (2019). IoT-based architectures for sensing and local data processing in ambient intelligence: Research and industrial trends. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1–6). IEEE. https://doi.org/10.1109/I2MTC.2019.8827064
  10. Liu, T., Li, T., Yuan, T., Sun, J., & Tang, H. (2023). Intelligent measurement and control communication network system. United States Patent No. US 11,777,592 B2 (Oct 3, 2023).
  11. Yusupbekov, N. R., Aliyev, R. A., Aliyev, R. R., & Yusupbekov, A. N. (2015). Boshqarishning intellektual tizimlari va qaror qabul qilish [Intelligent control systems and decision making]. Tashkent: O‘zbekiston Milliy Ensiklopediyasi.
  12. Kalinin, V., Gavrilenkova, M., & Taymanov, R. (2013). Intelligent force measurement system. In 11th ISMTII “Metrology-Master Global Challenges” (pp. 261–262). Aachen & Braunschweig, Germany.
  13. Pupkov, K. A., & Kon’kov, V. G. (2003). Intellektual’nye sistemy [Intelligent systems]. Moscow: Bauman Moscow State Technical University Press.
  14. Jumayev, O. A., Akhmatov, A. A., & Makhmudov, G. B. (2018). Process modeling of optimum mixing of cyanic solutions with use of intellectual systems of measurement on a basis of fuzzy logic. Chemical Technology, Control and Management, 2018(1), 132–137.
  15. GOST R 8.734-2011. GSI. Datchiki intellektual’nye i sistemy izmeritel’nye intellektual’nye. Metody metrologicheskogo samokontrolya [State Standard R 8.734-2011. Intelligent sensors and measuring systems. Methods of metrological self-control]. Moscow: Standartinform, 2011.
  16. Jumaev, O. A., Nazarov, J. T., Sayfulin, R. R., Ismoilov, M. T., & Mahmudov, G. B. (2020, November). Schematic and algorithmic methods of eliminating interference influence on the accuracy of intelligent interfaces of technological processes. Journal of Physics: Conference Series, 1679(4), 042037. IOP Publishing. https://doi.org/10.1088/1742-6596/1679/4/042037
  17. Yusupbekov, N. R., Avazov, Y. Sh., & Ruziev, U. (2023). Use of neural networks in intelligent measurement tools. Chemical Technology, Control and Management, 2023(4), Article 3.
  18. Jumaev, O., Makhmudov, G., Isabekova, V., Rakhimov, A., & Orziyev, J. (2024). Fuzzy-logic system for regulating the temperature regime of a bioreactor in the process of bacterial oxidation. E3S Web of Conferences, 525, 05011. EDP Sciences. https://doi.org/10.1051/e3sconf/202452505011

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.