Abstract
The paper discusses the challenges of enhancing the robustness of a control system for a complex dynamic plant by addressing nonlinearity in the warping process. Devices that ensure the stability of the control system against parameter non-stationarity on the warping machine are referred to as state controllers. The operating principle of these devices relies on providing artificial nonlinearity to the rear connection circuit of the control system's actuator. However, this nonlinearity is implemented using components that consider the parameters of low control quality. Therefore, it is necessary to continuously adjust the nonlinearity parameters to, on one hand, reduce the load on the actuator, and on the other hand, to ensure the required control accuracy. For this purpose, the synthesis of a correcting nonlinear element based on fuzzy logic for controlling the sensitivity of feedback sensors was examined to enhance the robustness of the control system by compensating for the nonlinearity of the process parameters. The Mamdani and Sugeno fuzzy inference models have been developed. Fuzzy logical inferences according to the Mamdani algorithm are carried out based on a fuzzy knowledge base. A fuzzy logical knowledge base according to the Sugeno algorithm (sometimes called the Takagi-Sugeno algorithm) was developed based on a fuzzy knowledge base. The effectiveness of the proposed approach was tested in the Simulink software environment of the engineering-specialized computing package MATLAB. Graphs of transient characteristics of the control system of the warping process under disturbance conditions were constructed, and overshoot was observed, amounting to 2%.
First Page
61
Last Page
70
References
- Iskandarov, Z. E., & Avezov, T. H. (2025). Research and construction of a robust fuzzy control system for the warping process. Automation of Control Processes, (2/80). https://doi.org/10.35752/1991-2927_2025_2_80_30
- Avezov, T. H., & Iskandarov, Z. E. (2024). Research of the fuzzy control system for adjusting thread tension during the warping process. Chemical Technology. Control and Management, (3), 59–65.
- Iskandarov, Z. E., Avezov, T. H., & Jurayev, J. B. (2024). System analysis of the automatic control system of a warping machine. Textile Journal of Uzbekistan, 1, 33–40.
- Avezov, T. H. (2024). Fuzzy control system for technological process parameters. Web of Technology Multidimensional Research Journal, 2(10), 1–7.
- Vasilyev, S. N., Kudinov, Y. I., & Pashenko, F. F. (2017). Intellektualnye sistemy upravleniya i nechetkie regulyatory. Ch. 1. Nechetkie modeli, logiko-lingvisticheskie i analiticheskie regulyatory [Intelligent control systems and fuzzy regulators. Part 1: Fuzzy models, logic-linguistic and analytical controllers]. Datchiki i Sistemy, (1/210), 4–19.
- Sidikov, I., Khalmatov, D., & Alimova, G. (2023). Algorithm for the synthesis of a predictive control system for the tape pulling process. E3S Web of Conferences, 389, 01083. https://doi.org/10.1051/e3sconf/202338901083
- Yegupov, N. D. (Ed.). (2001). Metody robastnogo, neyro-nechetkogo i adaptivnogo upravleniya [Methods of robust, neuro-fuzzy, and adaptive control]. Moscow: Bauman MSTU Press.
- Khalmatov, D. A., Khuzhanazarov, U. O., Alimova, G. R., & Murodov, J. M. (2021). Adaptive fuzzy control system for multi-dimensional dynamic object under the conditions of uncertainty of information. International Journal of Advanced Research in Science, Engineering and Technology, 8(2), 16608–16613.
- Lubensova, E. V., Piotrovsky, D. L., & Lubensov, V. F. (2017). Robastnaya nechetkaya sistema avtomaticheskogo upravleniya s peremennoy strukturoy [Robust fuzzy automatic control system with variable structure]. Fundamentalnye Issledovaniya, (3), 53–59.
- Saki, S., & Bolandi, H. (2022). Robustness analysis of adaptive model predictive control for uncertain non-linear dynamic systems using S-Gap metric concepts. ISA Transactions, 130, 582–597. https://doi.org/10.1016/j.isatra.2022.03.004
- Vent, D. P., Lopatin, A. G., & Brikov, B. A. (2017). Issledovaniye primeneniya nechetkogo regulyatora v robastnoy sisteme upravleniya [Study of the application of a fuzzy regulator in a robust control system]. Vestnik Mezhdunarodnoy Akademii Sistemnykh Issledovaniy: Informatika, Ekologiya, Ekonomika, 19(1), 3–12.
- Kostigov, A. M., Dadenkov, D. A., & Kaverin, A. A. (2013). Nechyotkaya sistema upravleniya dvizheniyem mobilnogo robota [Fuzzy control system of mobile robot motion]. Sovremennye Problemy Nauki i Obrazovaniya, (5), 136.
- Semichevskaya, N. P. (2006). Nelineynoye robastnoye upravleniye nestatsionarnymi obyektami so statsionarnym nablyudatelem [Nonlinear robust control of nonstationary objects with stationary observer]. Informatika Sistemy Upravleniya, 1(11), 202–211.
- Ghaffari, V. A. (2022). Robust predictive observer-based integral control law for uncertain LTI systems under external disturbance. Journal of the Franklin Institute, 359(13), 6915–6938. https://doi.org/10.1016/j.jfranklin.2022.06.037
- Gostev, V. I. (2008). Nechetkie regulyatory v sistemakh avtomaticheskogo upravleniya [Fuzzy regulators in automatic control systems]. Kiev: Radiomotor.
- Balandin, D. V., & Kogan, M. M. (2007). Algoritmy sinteza robastnogo upravleniya dinamicheskimi sistemami [Algorithms for the synthesis of robust control of dynamic systems]. Novgorod: NGGU Press.
- Hu, Y., Yang, Y., Li, S., & Zhou, Y. (2020). Fuzzy controller design of micro-unmanned helicopter relying on improved genetic optimization algorithm. Aerospace Science and Technology, 98.
- Tu, L., Guo, M., Wang, J., & Gao, W. (2024). Warp yarn tension coupling models and fuzzy PID control for enhancing warp beam unwinding tension stability in sizing machines. Journal of Industrial Textiles, 54. https://doi.org/10.1177/15280837241301709
- Alkhafaji, M. A., & Uzun, Y. (2020). Design and speed control of SynRM using cascade PID controller with PSO algorithm. International Journal of Renewable Energy Development, 9(1), 69–76.
- Pervushina, N. A., Donovskiy, D. Ye., & Khakimova, A. N. (2018). Razrabotka metodiki sinteza neyro-nechetkogo regulyatora s nastroykoy geneticheskim algoritmom [Development of a synthesis method for neuro-fuzzy regulator tuned by a genetic algorithm]. Vestnik Kontserna VKO “Almaz-Antey”, 4(27), 82–90.
- Cao, F. (2020). PID controller optimized by genetic algorithm for direct-drive servo system. Neural Computing and Applications, 32, 23–30.
- Litvinseva, L. V., Ulyanov, S. V., & Ulyanov, S. S. (2006). Postroyeniye robastnykh baz znaniy nechetkikh regulyatorov dlya intellektualnogo upravleniya sushchestvenno-nelineynymi dinamicheskimi sistemami. II. Optimizator baz znaniy na myagkikh vychisleniyakh i robastnost ISU [Construction of robust knowledge bases of fuzzy regulators for intelligent control of essentially nonlinear dynamic systems. II. Knowledge base optimizer on soft computing and robustness of ISU]. Izvestiya RAN. Teoriya i Sistemy Upravleniya, (5), 69–97.
Recommended Citation
Avezov, Tukhtamurod Khayitmurodovich and Iskandarov, Zokhid Ergashboyevich
(2025)
"INCREASING THE ROBUSTNESS OF A CONTROL SYSTEM FOR A COMPLEX DYNAMIC PLANT BY CORRECTING NONLINEARITY IN THE WARPING PROCESS,"
Chemical Technology, Control and Management: Vol. 2025:
Iss.
4, Article 8.
DOI: https://doi.org/10.59048/2181-1105.1700
Included in
Complex Fluids Commons, Controls and Control Theory Commons, Industrial Technology Commons, Process Control and Systems Commons