•  
  •  
 

Abstract

This paper discusses the synthesis algorithms for adaptive control systems based on the speed-gradient method. Adaptive control systems with implicit reference and adjustable models are synthesized using speed-gradient techniques, which reduce the requirements for the main control loop structure and the completeness of measurement data. Stable adaptive decentralized control algorithms are developed for a class of interconnected systems with nonlinear local dynamics and uncertainties, ensuring the stability of individual subsystems and the overall system while accounting for their interactions. To incorporate inter-subsystem interactions into the overall control law, an adaptation algorithm based on the speed-gradient method is introduced. A synthesis procedure is proposed for control systems using multilayer neural networks based on the speed-gradient method, which guarantees system stabilization under bounded external disturbances that are not directly measurable. Including the state vector of the controlled object in the neural network training functional ensures consistency between network parameter tuning and control of the dynamic system. Stable synthesis algorithms for adaptive neural network control systems are developed, ensuring the fulfillment of a limiting condition that guarantees achievement of the target control objective using the analytical design method for aggregated regulators. Based on the proposed algorithms, an adaptive control system for the tape-drawing process in conveyors is introduced. This adaptive system, grounded in the speed-gradient method, stabilizes process operation modes and improves overall efficiency.

First Page

70

Last Page

79

References

  1. Fradkov, A. L. (2003). Kiberneticheskaya fizika: printsipy i primery [Cybernetic physics: Principles and examples]. St. Petersburg: Nauka.
  2. Fomin, V. N., Fradkov, A. L., & Yakubovich, V. A. (1981). Adaptivnoe upravlenie dinamicheskimi ob'ektami [Adaptive control of dynamic systems]. Moscow: Nauka.
  3. Nikiforov, V. O. (2003). Adaptivnoe i robustnoe upravlenie s kompensatsiei vozmushchenii [Adaptive and robust control with disturbance compensation]. Moscow: Nauka.
  4. Kogan, M. M., & Neimark, Yu. I. (1987). Adaptivnoe upravlenie: Uchebnoe posobie [Adaptive control: Textbook]. Gorky: GGU Press.
  5. Igamberdiev, Kh. Z., Sevinov, Zh. U., & Zaripov, O. O. (2014). Regulyarnye metody i algoritmy sinteza adaptivnykh sistem upravleniya s nastroivayemymi modelyami [Regular methods and algorithms for synthesis of adaptive control systems with adjustable models]. Tashkent: TashGTU.
  6. Igamberdiev, Kh. Z., Yusupbekov, A. N., & Zaripov, O. O. (2012). Regulyarnye metody otsenivaniya i upravleniya dinamicheskimi ob'ektami v usloviyakh neopredelennosti [Regular methods of estimation and control for dynamic objects under uncertainty]. Tashkent: TashGTU.
  7. Fradkov, A. L. (1979). Skhema skorostnogo gradienta i ee primenenie v zadachakh adaptivnogo upravleniya [Speed gradient scheme and its application in adaptive control problems]. Avtomatika i Telemekhanika, (9), 90–101.
  8. Andrievskii, B. R., Stotskii, A. A., & Fradkov, A. L. (1988). Algoritmy skorostnogo gradienta v zadachakh upravleniya i adaptatsii [Speed-gradient algorithms in control and adaptation problems]. Avtomatika i Telemekhanika, (12), 3–39.
  9. Fradkov, A. L. (1979). Skhema skorostnogo gradienta v zadachakh adaptivnogo upravleniya [Speed gradient scheme in adaptive control problems]. In Proceedings of the 9th All-Union School on Adaptive Systems (pp. 139–143). Alma-Ata: KazPTI.
  10. Neimark, Yu. I. (1979). Avtomatnye modeli upravleniya i adaptatsii [Automatic models of control and adaptation]. In Proceedings of the 9th All-Union School on Adaptive Systems (pp. 107–110). Alma-Ata: KazPTI.
  11. Krasovskii, A. A. (1976). Optimal’nye algoritmy v zadache identifikatsii s adaptivnoi model’yu [Optimal algorithms for identification with adaptive model]. Avtomatika i Telemekhanika, (12), 75–82.
  12. Derevitskii, D. P., & Fradkov, A. L. (1981). Prikladnaya teoriya diskretnykh adaptivnykh sistem upravleniya [Applied theory of discrete adaptive control systems]. Moscow: Nauka.
  13. Gasparyan, O. (2016). Mnogomernye diskretnye sistemy avtomaticheskogo regulirovaniya [Multidimensional discrete automatic control systems]. LAP LAMBERT Academic Publishing.
  14. Seifullaev, I. R., Fradkov, A., & Liberzon, D. (2016). Energy control of a pendulum with quantized feedback. Automatica, 67, 171–177.
  15. Furtat, I. B., Gushchin, P. A., Nguyen, B., & Kolesnik, N. S. (2023). Adaptivnoe upravlenie s garantiyei zadannogo kachestva regulirovaniya [Adaptive control with guaranteed regulation quality]. Upravlenie bol’shimi sistemami, (102), 44–57.
  16. Mallayev, A., Sevinov, J., Xusanov, S., & Boborayimov, O. (2021). Algorithms for the synthesis of gradient controllers in a nonlinear control system. In Proceedings of CAMSTECH-II 2021 (pp. 51–53). Krasnoyarsk.
  17. Djigan, V. I. (2013). Adaptivnaya filtratsiya signalov: Teoriya i algoritmy [Adaptive signal filtering: Theory and algorithms]. Moscow: Tekhnosfera.
  18. Miroshnik, I. V., Nikiforov, V. O., & Fradkov, A. L. (2000). Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami [Nonlinear and adaptive control of complex dynamic systems]. St. Petersburg: Nauka.
  19. Antonov, V., Terekhov, V., & Tyukin, I. (2001). Adaptivnoe upravlenie v tekhnicheskikh sistemakh [Adaptive control in technical systems]. St. Petersburg: University Press.
  20. Bolodurina, I. P., & Matvienko, S. A. (2014). Metody i algoritmy adaptivnogo upravleniya slozhnymi sistemami [Methods and algorithms of adaptive control for complex systems]. Omsk: Omsk State Technical University.
  21. Pyatnitskiy, E. S., & Shestakov, A. L. (2018). Matematicheskoe modelirovanie nelineinykh sistem upravleniya [Mathematical modeling of nonlinear control systems]. Moscow: Fizmatlit.
  22. Fradkov, A. L., Pogromskii, A. Yu., & Andrievskii, B. R. (2000). Control of chaotic oscillations by speed-gradient method: Methods and examples. Physics Letters A, 265(4), 226–233.
  23. Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
  24. Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall.
  25. Åström, K. J., & Wittenmark, B. (1995). Adaptive control (2nd ed.). Reading, MA: Addison-Wesley.
  26. Narendra, K. S., & Annaswamy, A. M. (1989). Stable adaptive systems. Englewood Cliffs, NJ: Prentice Hall.
  27. Sastry, S., & Bodson, M. (1989). Adaptive control: Stability, convergence, and robustness. Englewood Cliffs, NJ: Prentice Hall.
  28. Ioannou, P., & Sun, J. (2012). Robust adaptive control. Mineola, NY: Dover Publications.
  29. Polycarpou, M. M. (1996). Adaptive nonlinear control of systems with unmodeled dynamics. IEEE Transactions on Automatic Control, 41(5), 668–677.
  30. Chen, C.-T. (2013). Linear system theory and design (4th ed.). New York, NY: Oxford University Press.
  31. Landau, I. D., Lozano, R., M'Saad, M., & Karimi, A. (2011). Adaptive control: Algorithms, analysis and applications (2nd ed.). London: Springer.
  32. Ortega, R., Loría, A., Nicklasson, P. J., & Sira-Ramírez, H. (1998). Passivity-based control of Euler–Lagrange systems: Mechanical, electrical and electromechanical applications. London: Springer.
  33. Fradkov, A. L., & Pogromsky, A. Y. (1998). Introduction to control of oscillations and chaos. Singapore: World Scientific.
  34. Åström, K. J., & Murray, R. M. (2010). Feedback systems: An introduction for scientists and engineers. Princeton, NJ: Princeton University Press.
  35. Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal control (3rd ed.). Hoboken, NJ: John Wiley & Sons.
  36. Rugh, W. J. (1996). Linear system theory (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
  37. Nise, N. S. (2019). Control systems engineering (8th ed.). Hoboken, NJ: John Wiley & Sons.
  38. Dorf, R. C., & Bishop, R. H. (2017). Modern control systems (13th ed.). Upper Saddle River, NJ: Pearson.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.