Abstract
The paper considered the problems of researching the stabilisation system and backstepping control of stochastic nonlinear systems. The characteristics of stochastic nonlinear dynamic control systems are random signals with normal lawful distribution, which significantly complicates task control. In stochastic control, it is necessary to determine the trajectories of the control variables in order to achieve the desired control objective at minimum cost. Since the mathematical equations of stochastic nonlinear systems are not always constant, not every model-based controller can be accurate. Therefore, in this work, a neuro-fuzzy network is used to evaluate the parameters of the control system with backstepping, which allows us to overcome the difficulties associated with the inaccuracy of the mathematical model of the system. This paper proposes to use a combination of the hybrid application of fuzzy neural network and backstepping control method to control nonlinear plants for analytical support of the control system stability. A comparative analysis of the proposed method with a neural network control system using a radial basis function for solving the assigned task is implemented. The analysis of the results shows that the proposed method is highly effective and can be used for any class system under consideration.
First Page
72
Last Page
77
References
- Vaiana, N., Sessa, S., Rosati, L. (2020). A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech. Syst. Signal Process, 146, January 2021, 106984. doi.org/10.1016/j.ymssp.2020.106984.
- Hui, Y., Shipeng, W., Wei, L., Xiaofei, Y., Zhaoping, D., Wentao, X. (2024). Adaptive neural synergetic heading control for USVs with unknown dynamics and disturbances. Ocean Engineering, 300, 117438. doi.org/10.1016/j.oceaneng.2024.117438.
- Borisov, A., Bosov, A., Miller, A. (2022). Optimal Stabilization of Linear Stochastic System with Statistically Uncertain Piecewise Constant Drift. Mathematics. 10, 184, doi.org/10.3390/math10020184.
- Bashkirtseva, I. (2021). Controlling Stochastic Sensitivity by Feedback Regulators in Nonlinear Dynamical Systems with Incomplete Information. Mathematics, 9, 3229. doi.org/10.3390/math9243229.
- Wang, J., Xu, C., Tavoosi, J. (2021). A Novel Nonlinear Control for Uncertain Polynomial Type-2 Fuzzy Systems (Case Study: Cart-Pole System). Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 29, 753-770. doi:10.1142/S0218488521500331.
- Wang, M., Wang, Z., Dong, H., Han, Q.L. (2021). A Novel Framework for Backstepping-Based Control of Discrete-Time Strict-Feedback Nonlinear Systems with Multiplicative Noises. IEEE Trans. Autom. Control, 66, 1484-1496. doi:10.1109/TAC.2020.2995576.
- Labiod, S., Guerra, T.M. (2020). Adaptive Fuzzy Control for Multivariable Nonlinear Systems with Indefinite Control Gain Matrix and Unknown Control Direction. IFAC-PapersOnLine, 53, 8019-8024. doi.org/10.1016/j.ifacol.2020.12.2232.
- Sui, S., Chen, C.L.P., Tong, S. (2021). Neural-Network-Based Adaptive DSC Design for Switched Fractional-Order Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst., 32, 4703-4712. doi: 10.1109/tnnls.2020.3027339. PMID: 33090956.
- Wang, J., Liu, Z., Zhang, Y., Chen, C.L.P., Lai, G. (2020). Adaptive Neural Control of a Class of Stochastic Nonlinear Uncertain Systems with Guaranteed Transient Performance. IEEE Trans. Cybern., 50, 2971-2981. doi:10.1109/TCYB.2019.2891265
- Siddikov, I., Khalmatov, D., Khushnazarova, D., Khujanazarov, U. (2024). Nonlinear systems control algorithm with backstepping method. E3S Web of Conferences, 508, 04004. doi.org/10.1051/e3sconf/202450804004.
- Siddikov, I., Nashvandova, G., Alimova, G. (2024). Neural network optimizer of proportional - integral - differential controller parameters. International Journal of Electrical and Computer Engineering, 14(3), 2533-2540. doi: 10.11591/ijece.v14i3.pp2533-2540
- Al-Hussein, A.-B.A., Tahir, F.R., Pham, V.-T. (2021). Fixed-time synergetic control for chaos suppression in endocrine glucose-insulin regulatory system. Control Engineering Practice, 108, 104723. doi.org/10.1016/j.conengprac.2020.104723.
- Islam, M.M., Siffat, S.A., Ahmad, I., Liaquat, M. (2021). Robust integral backstepping and terminal synergetic control of course keeping for ships. Ocean Engineering, 221, 108532. doi.org/10.1016/j.oceaneng.2020.108532.
- Siddikov, I., Porubay, O., Rakhimov, T. (2024). Synthesis of the neuro-fuzzy regulator with genetic algorithm. International Journal of Electrical and Computer Engineering, 14(1), 184-191. doi:10.11591/ijece.v14i1.pp184-191.
- Fei, J., Fang, Y., Yuan, Z. (2020). Adaptive Fuzzy Sliding Mode Control for a Micro Gyroscope with Backstepping Controller. Micromachines, 11, 968. doi.org/10.3390/mi11110968.
- Wu, G.Q., Song, S.M., Sun, J.N. (2018). Finite-Time Dynamic Surface Antisaturation Control for Spacecraft Terminal Approach Considering Safety. J. Spacecr. Rocket, 55, 1430-1443. doi:10.3390/math10091406.
- Ma, Z., Ma, H. (2020). Adaptive Fuzzy Backstepping Dynamic Surface Control of Strict-Feedback Fractional-Order Uncertain Nonlinear Systems. IEEE Trans. Fuzzy Syst., 28, 122-133. doi: 10.1109/TFUZZ.2019.2900602.
- Hu, J., Zhang, P., Kao, Y., Liu, H., Chen, D. (2019). Sliding mode control for Markovian jump repeated scalar nonlinear systems with packet dropouts: The uncertain occurrence probabilities case. Applied Mathematics and Computation, 362, 124574. doi.org/10.1016/j.amc.2019.124574
- I. Sidikov, D. Khalmatov, and G. Alimova, (2023). Algorithm for the synthesis of a predictive control system for the tape pulling process. E3S Web of Conferences, 389. doi: 10.1051/e3sconf/202338901083.
- Siddikov, I., Khalmatov, D., Khushnazarova, D. (2023). Synthesis of synergetic laws of control of nonlinear dynamic plants. E3S Web of Conferences, 452, 06024. doi.org/10.1051/e3sconf/202345206024
- Min, H., Xu, S., Zhang, Z. (2021). Adaptive Finite-Time Stabilization of Stochastic Nonlinear Systems Subject to Full-State Constraints and Input Saturation. IEEE Transactions on Automatic Control, 66, 1306-1313. doi:10.1109/TAC.2020.2990173
- Siddikov, I.X., Porubay, O., Rakhimov, T. (2024). Synthesis of the neuro fuzzy regulator with genetic algorithm. International Journal of Electrical and Computer Engineering, 14(3), 2533-2540. doi: 10.11591/ijece.v14i3.pp2533-2540.
- 23 Siddikov, I., Khalmatov, D., Khushnazarova, D., Khujanazarov, U. (2024). Neural network control of a nonlinear dynamic plant with a predictive model. International Journal of Electrical and Computer Engineering, 14(5). 5131-5138. doi:10.11591/ijece. v14i5.pp5131-5138.
- 24 Homayoun, B., Arefi, M.M., Vafamand, N. (2023). Robust adaptive backstepping tracking control of stochastic nonlinear systems with unknown input saturation: A command filter approach. International Journal of Robust and Nonlinear Control, 30, 3296-3313. doi.org/10.1002/rnc.4933.
- 25 Xakimovich, S.I., Maxamadjanovna, U.D. (2020). Fuzzy logical control models of nonlinear dynamic objects. Advances in Science, technology and Engineering Systems, 5(4), 419-423. doi.org/10.25046/aj050449.
Recommended Citation
Siddikov, Isamidin Khakimovich; Khalmatov, Davronbek Abdalimovich; Alimova, Gulchekhra Rakhimjanovna; and Khushnazarova, Dilnoza Rakhmanovna
(2025)
"INTELLIGENT METHOD OF DYNAMIC CONTROL FOR A CLASS OF STOCHASTIC NONLINEAR SYSTEMS,"
Chemical Technology, Control and Management: Vol. 2025:
Iss.
5, Article 10.
DOI: https://doi.org/10.59048/2181-1105.1684
Included in
Complex Fluids Commons, Controls and Control Theory Commons, Industrial Technology Commons, Process Control and Systems Commons