•  
  •  
 

Abstract

The synthesis of a feedback propagation control law for an inner tube heat exchanger with a steam jacket is addressed in this text. A controller has been developed that, based on temperature measurements taken at four points. The maintains the output temperature at a specified level by acting on the steam jacket temperature. To determine the parameters of the plant, a linear quadratic optimal (LQ-optimal) algorithm is employed. In the considered case, the optimal controller includes a proportional–integral (PI) component, as well as an additional term that requires storing the control input over the current interval for its computation. The proposed linear quadratic optimal control strategy can also be applied to nonlinear systems, provided that the system is linearized in the vicinity of a given reference trajectory. The presented computational procedures for parametric identification make it possible to regulate the feedback propagation control law synthesis problem, thereby stabilizing the process of control law formation.

First Page

61

Last Page

67

References

  1. Lvova, E.I. (2014). Osobennosti identifikatsii ob’ektov slozhnoy struktury s raspredelennymi upravlyayushchimi vozdeystviyami [Features of identification of complex-structure plants with distributed control actions]. In XII Vserossiyskoe soveshchanie po problemam upravleniya (VSPU-2014). Moscow: V.A. Trapeznikov Institute of Control Sciences RAS, 3202-3213. (in Russian).
  2. Shilyaev, M.I., Tolstykh, A.V. (2013). Modelirovanie protsessov absorbtsii gazov v barbotazhnykh apparatakh [Modeling of gas absorption processes in bubbling apparatus]. Teplofizika i Aeromekhanika, (5), 575-586. (in Russian).
  3. Musakaev, N.G., Khasanov, M.K. (2014). Matematicheskoe modelirovanie protsessa dobychi gaza iz gazogidratnoy zalezhi s uchetom obrazovaniya l’da [Mathematical modeling of gas production from gas hydrate deposits considering ice formation]. Vestnik Tyumen State University: Physical and Mathematical Sciences, Informatics, (7), 43-50. (in Russian).
  4. Abramkin, S.E., Dushin, S.E., Pervukhin, D.A. (2019). Problemy razrabotki sistem upravleniya gazodobyvayushchimi kompleksami [Problems of developing control systems for gas production complexes]. Izvestiya Vuzov. Priborostroenie, 62(8), 685-692. (in Russian).
  5. Radkevich, V.V. (2009). Teoriya i praktika proektirovaniya sistem upravleniya ob’ektami gazovoy otrasli [Theory and practice of designing control systems for gas industry plants]. Doctoral dissertation abstract. Moscow. (in Russian).
  6. Ismagilov, R.N., Abramkin, S.E., Dushin, S.E. (2018). Sostoyanie i perspektivy razvitiya avtomatizatsii ustanovok kompleksnoy podgotovki gaza na UNGKM [Status and prospects of automation development at gas treatment units of UNGKM]. In Perspective Directions of Urengoy Complex Development. Moscow: Nedra, 271-281. (in Russian).
  7. Radkevich, V.V. (2004). Sistemy upravleniya ob’ektami gazovoy otrasli [Control systems for gas industry plants]. 2nd ed. Moscow: Serebryanaya Nit’. 440 p. (in Russian).
  8. Abramkin, S.E., Dushin, S.E. (2010). Matematicheskaya model massoteploobmennykh protsessov tekhnologicheskogo kompleksa absorbsionnoy osushki gaza [Mathematical model of mass and heat exchange processes in an absorption gas drying unit]. In Proc. VI Scientific Conf. “Control and Information Technologies”, St. Petersburg: LETI, 220-224. (in Russian).
  9. Akhmetsagirov, R.I., Kibkalo, S.S. (2019). Energoeffektivnaya induktsionnaya sistema dlya tekhnologicheskogo nagreva neelektroprovodnykh zhidkostey [Energy-efficient induction system for technological heating of non-conductive liquids]. In Energy Efficiency and Safety of Industrial Processes (EEPP-2019), 241-244. (in Russian).
  10. Gubarev, V.F., Gummel, A.V., Melnichuk, S.V., Tochilin, P.A. (2014). Identifikatsiya mnogomernykh sistem: problemy korrektnosti i upravleniya [Identification of multidimensional systems: problems of correctness and control]. In XII All-Russian Meeting on Control Problems (VSPU-2014), Moscow, 2635-2645. (in Russian).
  11. Bobtsov, A.A., Pyrkin, A.A., Furtat, I.B. (2014). Upravlenie sistemami s zapazdyvaniem [Control of systems with delay]. St. Petersburg: ITMO University Press. 120 p. (in Russian).
  12. Sevinov, J.U., Abdishukurov, Sh.M. (2025). Algorithms for making control systems based on neural network technology to automate dynamic plants. Chemical Technology, Control and Management, 3(8). DOI: https://doi.org/10.59048/2181-1105.1687.
  13. Igamberdiev, KH.Z., Sevinov, ZH.U., Zaripov, O.O. (2014). Regulyarnye metody i algoritmy sinteza adaptivnykh system upravleniya s nastraivaemymi modelyami [Regular methods and algorithms for the synthesis of adaptive control systems with customizable models]. T.: TashGTU, 160 p. (in Russian).
  14. Balavin, M.A. (2000). Matematicheskoe modelirovanie i optimizatsiya tekhnologicheskikh protsessov podgotovki gaza k transportu [Mathematical modeling and optimization of gas treatment processes for transportation]. Candidate of Technical Sciences Dissertation Abstract. Samara. 24 p. (in Russian).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.