Abstract
A wide class of control system elements can be described with reasonable accuracy by the concept of a linear stationary dynamic object. Several mathematical descriptions of such an object are known. The traditional mathematical model is a high-order ordinary linear differential equation. In the Laplace image space, this corresponds to a fractional-rational transfer function. The latter can be decomposed into elementary fractions. Then, using the convolution theorem and tables of elementary Laplace transform functions, one can access the originals. It is crucial to ensure precise alignment of the parameters of the mathematical model of the object used in the corrector with the actual parameters of the object. If this condition is violated (for example, due to sensor aging during operation in an aggressive environment), additional dynamic error arises, which can significantly reduce the effectiveness of the correction. It is important not only to ensure the adequacy of the mathematical model relative to the actual object but also to promptly monitor changes in the object's parameters. To achieve this, effective algorithms for parametric identification of the object model are required. The heuristic algorithm for identifying a linear stationary aperiodic object with distributed parameters based on an experimental transient response is proposed. The time constant and degree of inertia are determined as parameters of the object model in the form of an irrational transfer function.
First Page
67
Last Page
72
References
- Verlan', A.F., Sytnik, A.A., Sagatov, M.V. (2011). Metody matematicheskogo i komp'yuternogo modelirovaniya izmeritel'nykh preobrazovateley i sistem na osnove integral'nykh uravneniy [Methods of mathematical and computer modeling of measuring transducers and systems based on integral equations]. Tashkent: Fan, 344 p. (in Russian).
- Vasil'yev, V.V., Simak, L.A. (2008). Drobnoye ischisleniye i approksimatsionnyye metody v modelirovanii dinamicheskikh system [Fractional calculus and approximation methods in modeling dynamic systems]. K.: NAN Ukrainy, 256 p. (in Russian).
- Ilyukhin, A.V., Marsov, V.I., Marsova, E.V. (2018). Osnovnye printsipy i metody avtomatizatsii teplovykh protsessov na predpriyatiyakh dorozhno-stroitel'nogo kompleksa [Basic principles and methods of automation of thermal processes at road construction industry enterprises]. M.: MADI, 112 p. (in Russian).
- Verlan', A.F., Maksimovich, N.A., Sagatov, M.V. (2002). Ispol'zovanie vychislitel'nykh korrektiruyushhikh ustrojstv dlya snizheniya dinamicheskoj pogreshnosti inertsionnykh datchikov [Use of computational compensating devices to reduce the dynamic error of inertial sensors]. ZHurnal «Problemy informatiki i ehnergetiki», 2, 3-7. (in Russian).
- Maksimova, I.N. (2014). Metody obrabotki ehksperimental'nykh dannykh [Methods of processing experimental data]. Penza: PGUAS. 116 p. (in Russian).
- Denisenko, A.N. (2010). Komp'yuternaya obrabotka informatsii [Computer processing of information]. M.: Medpraktika-M, 252 p. (in Russian).
- Godlevskij, V.S., Godlevskij, V.V. (2020). Voprosy tochnosti pri obrabotke signalov [Accuracy issues in signal processing]. Kiev: Al'fa reklama, 407 p. (in Russian).
- Sizikov, V.S. (2001). Matematicheskie metody obrabotki rezul'tatov izmerenij [Mathematical methods for processing measurement results]. Sankt-Peterburg: Politekhnika, 240 p. (in Russian).
- Verlan', A.F., Moskalyuk, S.S. (1986). Matematicheskoe modelirovanie nepreryvnykh dinamicheskikh system [Mathematical modeling of continuous dynamic systems]. Kiev: Naukova dumka, 544 p. (in Russian).
- Men'shikov, YU.L., Polyakov, N.V. (2009). Identifikatsiya modelej vneshnikh vozdejstvij [Identification of external disturbance models]. D.: Nauka i obrazovanie, 188 p. (in Russian).
- Verlan', A.F., Goroshko, I.O., Karpenko, E.YU., Korolev, V.YU., Mosentsova, L.V. (2011). Metody i algoritmy vosstanovleniya signalov i izobrazhenij [Methods and algorithms for signal and image reconstruction]. 368 p. (in Russian).
- Verlan, A., Fedorchuk, V., Sterten, J. (2020). Using Non-linear Integral Models in Automatic Control and Measurement Systems for Sensors’ Input Signals’ Recovery. 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020). Advances in Intelligent Systems and Computing, 1323. Springer, Cham. [Online]. Available: https://doi.org/10.1007/978-3-030-68004-6_3.
- Capponetto, R., Dangola, G., Fortuna, L., Petras, I. (2010). Fractional Order Systems. World Scientific Publishing Co. Pte. Ltd., 196 p.
- Arnol'd, V.I. (2001). TSepnye drobi [Continued Fractions]. M. : Moskovskij tsentr nepreryvnogo matematicheskogo obrazovaniya, 40 p. (in Russian).
- Shantanu, Das. (2008). Functional Fractional Calculus for System Identification and Controls. Springer-Verlag Berlin Heidelberg, 240 p.
Recommended Citation
Sagatov, Miraziz Vorisovich
(2025)
"THE PROBLEM OF IDENTIFICATION OF LINEAR STATIONARY OBJECTS WITH DISTRIBUTED PARAMETERS BY THEIR EXPERIMENTAL TRANSIENT CHARACTERISTICS,"
Chemical Technology, Control and Management: Vol. 2025:
Iss.
5, Article 9.
DOI: https://doi.org/10.59048/2181-1105.1716