•  
  •  
 

Abstract

This paper presents a Fuzzy-SPT (Fuzzy Set-Point Tracking) controller designed to combine the strengths of FLC (Fuzzy Logic Control) and PID (Proportional-Integral-Derivative) control while mitigating their limitations across varying operating conditions. Inspired by state-dependent reasoning but implemented within a single controller, the method uses internal logic to adapt the control effort across different operating regions. FLC handles rapid changes and nonlinear transients, enabling fast system response without overshoot, while PID-like integral action is activated when the FLC reaches steady state or enters a threshold region near the set point, eliminating residual errors and maintaining stable performance. By applying each behavior in its most suitable region, the Fuzzy-SPT controller achieves a unified hybrid approach without complex switching mechanisms. Simulation results using a simplified battery model with forced convection cooling demonstrate improved overall system performance, achieving better RMSE (Root Mean Square Error) values compared to standalone FLC and PID controllers, and provide a framework for exploring condition-driven control behavior within a single, interpretable unit. The findings highlight a practical methodology for designing flexible adaptive controllers that leverage complementary strengths of multiple strategies.

First Page

68

Last Page

81

References

  1. Albarakati, A.J., Boujoudar, Y., Azeroual, M., Eliysaouy, L., Kotb, H., Aljarbouh, A., et al. (2022). Microgrid energy management and monitoring systems: A comprehensive review. Frontiers in Energy Research, 10, 1097858. https://doi.org/10.3389/fenrg.2022.1097858
  2. Aliyeva, K. (2025). Estimation of renewable energy sources under uncertainty using fuzzy AHP method. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15(2), 104-109. https://doi.org/10.35784/iapgos.7191
  3. Bakirova, L., Yusubov, E. (2021). Design and simulation of the auto-tuning TS-fuzzy PID controller for the DC-DC ZETA converter. CEUR Workshop Proceedings, 238-243. Available: https://elibrary.ru/item.asp?id=49020698
  4. Belman-Flores, J.M., Rodríguez-Valderrama, D.A., Ledesma, S., García-Pabón, J.J., Hernández, D., Pardo-Cely, D.M. (2022). A review on applications of fuzzy logic control for refrigeration systems. Applied Sciences, 12(3), 1302. https://doi.org/10.3390/app12031302
  5. Borunda, M., Ramírez, A., Garduño, R., Ruíz, G., Hernandez, S., and Jaramillo, O.A. (2022). Photovoltaic power generation forecasting for regional assessment using machine learning. Energies, 15(23), 8895. https://doi.org/10.3390/en15238895
  6. Kermani, M., Adelmanesh, B., Shirdare, E., Sima, C.A., Carnì, D.L., and Martirano, L. (2021). Intelligent energy management based on SCADA in a real microgrid for smart building applications. Renewable Energy, 171, 1115-1127. https://doi.org/10.1016/j.renene.2021.03.008
  7. Mammadov, R. (2025). Optimal load shedding for power systems using the binary exhaustive search method. In C. Kahraman et al. (Eds.), Intelligent and Fuzzy Systems, Springer, 175-183. https://doi.org/10.1007/978-3-031-98304-7_20
  8. Mammadzada, R.R. (2025). Primenenie nechetkoj logiki dlya termoregulirovaniya s ispol'zovaniem podkhoda modelirovaniya pri razdelenii komponentov [Application of fuzzy logic for thermal regulation using component separation modeling approach]. Materialy XV Mezhdunarodnoj molodezhnoj nauchno-prakticheskoj konferentsii s ehlementami nauchnoj shkoly. Omsk. (in Russian). Available: https://www.elibrary.ru/item.asp?id=82947792
  9. Mammadzada, R.R. (2025). Vozmozhnosti ispol'zovaniya Simscape dlya modelirovaniya sistemy regulirovaniya temperatury s teoriej nechetkoj logiki v obrazovatel'nykh tselyakh [Possibilities of using Simscape for modeling a temperature control system with fuzzy logic theory for educational purposes]. Aktual'nye voprosy professional'nogo obrazovaniya. (in Russian). Available: https://libeldoc.bsuir.by/handle/123456789/61784
  10. Mammadzada, R. (2025). A systematic approach to thermal system modeling with examples using first principles. Proceedings of MaCoSEP 2025. Available: https://macosep.cyber.az/2025/papers/05.05.html
  11. Mammadzada, R. (2025). A script-based approach for automating fuzzy-PID rule assignment from 7×7 tables to FIS files. Proc. 6th Int. Conf. Problems of Cybernetics and Informatics (PCI), 1-4. https://doi.org/10.1109/PCI66488.2025.11219882
  12. Pérez Escobar, B.L., Pérez Hernández, G., Ocampo Ramírez, A., Rojas Blanco, L., Díaz Flores, L.L., Vidal Asencio, I., et al. (2021). Analysis of thermomechanical stresses in a photovoltaic panel using passive cooling. Applied Sciences, 11(21), 9806. https://doi.org/10.3390/app11219806
  13. Subramaniam, K.R., Cheng, C.T., Pang, T.Y. (2023). Fuzzy logic controlled simulation for regulating thermal comfort and indoor air quality using a vehicle heating, ventilation, and air-conditioning system. Sensors, 23(3), 1395. https://doi.org/10.3390/s23031395
  14. Siddikov, I.X., Umurzakova, D.M. (2020). Fuzzy-logical control models of nonlinear dynamic objects. Advances in Science, Technology and Engineering Systems, 5(4), 419-423. https://doi.org/10.25046/aj050449
  15. Sun, T., Wang, L., Ren, D., Shi, Z., Chen, J., Zheng, Y., et al. (2023). Thermal runaway characteristics and modeling of LiFePO4 power batteries. Automotive Innovation, 6(3), 414-424. https://doi.org/10.1007/s42154-023-00226-3
  16. Sun, W., Si, H., Li, Y., Wang, H., Qiu, J., Li, G. (2023). Fuzzy control algorithm applied to constant airflow control of fans. Energies, 16(11), 4425. https://doi.org/10.3390/en16114425
  17. Yusubov, E., Bakirova, L. (2021). A self-tuning fuzzy PID controller for SEPIC based on Takagi-Sugeno inference system. 2021 International Conference Automatics and Informatics (ICAI), 54-57. https://doi.org/10.1109/ICAI52893.2021.9639804
  18. Yusubov, E., Bekirova, L. (2023). The optimized power flow control system for the photovoltaic DC microgrid. E3S Web of Conferences, 404, 03001. https://doi.org/10.1051/e3sconf/202340403001
  19. Yusubov, E., Bekirova, L. (2025). Stability of metaheuristic PID controllers in photovoltaic DC microgrids. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 15. https://doi.org/10.35784/iapgos.6410
  20. Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.