Abstract
The problems of synthesis of adaptive observers are considered, for linear dynamic systems containing parameter identifiers, estimators of the initial and current state vectors. For a stable estimation of object parameters, an iterative process is used, based on the normalized decomposition of the matrix operator of the identification equation. These algorithms allow the stable identification of the parameters of the controlled objects on the basis of the use of regular computational procedures and thereby improve the quality of the functioning of the adaptive observing device.
First Page
138
Last Page
142
References
1. V.N.Afanas'ev, “Upravlenie neopredelenny'mi dinamicheskimi ob`ektami” [Control of uncertain dynamic objects], Moskva: FIZMATLIT, 2008, 208 p. (in Russian).
2. A.A.Bobcov, V.O.Nikiforov, A.A.Py'rkin, O.V.Slita, A.V.Ushakov, “Metody' adaptivnogo i robastnogo upravleniya nelineyny'mi ob`ektami v priborostroenii: uchebnoe posobie dlya vy'sshih uchebny'h zavedeniy” [Methods of adaptive and robust control of nonlinear objects in instrument engineering: textbook for higher educational institutions], SPb: NIU ITMO, 2013, 277 p.
3. N.D. Egupovak, “Metody' robastnogo, neyro-nechetkogo i adaptivnogo upravleniya” [Robust, neuro-fuzzy, and adaptive control methods], Moskva: Izd-vo MGTU im. N.E`. Baumana, 2001, 744 p. (in Russian)
4. N.N.Karabutov, “Adaptivnaya identifikaciya sistem: Informacionny'y sintez” [Adaptive identification of systems: information synthesis], Izd. Stereotip: 2016, 384 p. (in Russian)
5. L.N.Sotirov, “Optimal'noe singulyarnoe adaptivnoe nablyudenie ponijennogo poryadka dlya odnogo klassa diskretny'h system” [Optimal singular adaptive observation of the understood order for a single class of discrete systems], AiT no. 2, pp. 75-82, 1999. (in Russian).
6. A.N.Tihonov, V.YA.Arsenin, “Metody' resheniya nekorrektny'h zadach” [Methods for solving incorrect problems], Moskva: Nauka, 1986, 288 p. (in Russian).
7. A.I.Jdanov, “Vvedenie v metody' resheniya nekorrektny'h zadach” [Introduction to methods for solving incorrect problems], Izd. Samarskogo gos. ae`rokosmicheskogo un-ta, 2006, 87 p. (in Russian).
8. G.M.Vaynikko, A.YU.Veretennikov, “Iteracionny'e procedury' v nekorrektny'h zadachah” [Iterative procedures in incorrect problems], Moskva: Nauka, 1986. (in Russian).
9. A.B.Bakushinskiy, A.V.Goncharskiy “Iterativny'e metody' resheniya nekorrektny'h zadach” [Iterative methods for solving incorrect problems], Moskva: Nauka, 1989, 128 p. (in Russian).
10. V.I.Lebedev, “Funkcional'ny'y analiz i vy'chislitel'naya matematika: 4-e izdanie”, [Functional analysis and computational mathematics: 4th edition], Moskva: FIZMATLIT, 2000, 296 p. (in Russian).
11. F.R.Gantmaher, “Teoriya matric” [Matrix theory], 4-e izd, Moskva: Nauka. Fiz.-mat. lit., 1988, 552 p. (in Russian).
12. R.Horn, CH.Djonson, “Matrichny'y analiz” [Matrix analysis], Moskva: Mir, 1989, 655 p. (in Russian).
13. CH.Louson, R.Henson, “CHislennoe reshenie zadach metoda naimen'shih kvadratov” [Numerical solution of the problem of the least squares method], Moskva: Nauka. Gl. red. fiz.-mat. lit., 1986, 232 p. (in Russian).
14. S.K.Godunov, A.G.Antonov, O.P.Kirilyuk, V.I.Kostin, “Garantirovannaya tochnost' resheniya sistem lineyny'h uravneniy v evklidovy'h prostranstvah” [Guaranteed accuracy of solving systems of linear equations in Euclidean spaces], Novosibirsk: Nauka, 1988, 456 p. (in Russian).
Recommended Citation
Igamberdiyev, H.Z and Rasulev, A.H
(2018)
"Steady synthesis algorithms of the adaptive observers in control systems dynamic objects,"
Chemical Technology, Control and Management: Vol. 2018:
Iss.
1, Article 23.
DOI: https://doi.org/10.34920/2018.1-2.138-142