Abstract
The problems of constructing stable algorithms for locally optimal stabilization of controlled dynamic objects under conditions of incomplete observations and non-measurable perturbations are considered. Algorithms for the formation of locally optimal control objects on the basis of pseudo-inversion concepts of matrices are presented. For a stable pseudo-inversion of matrices, we use the Tikhonov regularization method for extremal problems with the choice of the regularization parameter by the generalized residual principle. In determining the desired solution, we use the procedure for reducing the regularized system to a set of three diagonal systems of linear algebraic equations that are solved by the sweep method.
First Page
65
Last Page
69
References
1. V.N.Afanas'ev, Upravlenie neopredelenny'mi dinamicheskimi ob`ektami [Control of uncertain dynamic objects]. Moskva: Fizmatlit, 2008, 208 p. (in Russian).
2. A.A.Bobcov, A.A.Py'rkin, Adaptivnoe i robastnoe upravlenie s kompensaciey neopredelennostey [Adaptive and regional management with uncertainty compensation]. Sankt-Peterburg: NIU ITMO, 2013, 135 p. (in Russian).
3. G.M.Ostrovskiy, Tehnicheskie sistemy' v usloviyah neopredelennosti: analiz gibkosti i optimizaciya [Technical systems under uncertainty: flexibility analysis and optimization]. Moskva: BINOM, 2008, 319 p. (in Russian).
4. V.O.Nikiforov, A.V.Ushakov, Upravlenie v usloviyah neopredelennosti: chuvstvitel'nost', adaptaciya, robastnost' [Managing under uncertainty: feelings, adaptation, resilience]. Sankt-Peterburg: GITMO (TU), 2002, 232 p. (in Russian).
5. H.Z.Igamberdiev, A.N.YUsupbekov, O.O.Zaripov, Regulyarny'e metody' ocenivaniya i upravleniya dinamicheskimi ob`ektami v usloviyah neopredelennosti [Regular methods for evaluating and managing dynamic objects under uncertainty]. Tashkent: TashGTU, 2012, 320 p.
6. G.K.Kel'mans, A.S.Poznyak, A.V.CHernicer, “Lokal'no-optimal'noe upravlenie ob`ektami s neizvestny'mi parametrami” [Locally-optimal management of objects with unknown parameters], Avtomat. i telemeh., no. 10, pp. 80-93, 1992, (in Russian).
7. B.S.Darhovskiy, G.G.Magaril-Il'yaev, “O sinteze sistem stabilizacii” [About synthesis of the stabilization system], Avtomat. i telemeh., no. 12, pp. 66-74, 1990, (in Russian).
8. E.V.Bodyanskiy, M.D.Boryachok, “Lokal'no-optimal'noe psevdodual'noe upravlenie ob`ektami s neizvestny'mi parametrami” [Locally optimal pseudo-dual control of objects with unknown parameters], Avtomat. i telemeh., no. 2, pp. 90-97, 1992, (in Russian).
9. M.M.Kogan, YU.I.Neymark, “Ob optimal'nosti lokal'no-optimal'ny'h resheniy zadach upravleniya i fil'tracii” [On the optimality of locally optimal solutions to control and filtering problems] Avtomat. i telemeh., no. 4, pp. 101-110, 1992, (in Russian).
10. B.S.Darhovskiy, “Lokal'no optimal'naya stabilizaciya pri nepolnoy informacii” [Locally optimal stabilization with incomplete information], Avtomat. i telemeh., no. 4, pp. 144-154, 1997, (in Russian).
11. M.M.Kogan, YU.I.Neymark, “Funkcional'ny'e vozmojnosti adaptivnogo lokal'no-optimal'nogo upravleniya” [Functional potential of adaptive local-optimal control], Avtomat. i telemeh., no. 6, pp. 94-105, 1994, (in Russian).
12. K.S.Kim, V.I.Smagin, “Lokal'no-optimal'noe upravlenie diskretny'mi sistemami s zapazdy'vaniem v kanale upravleniya pri nepolnoy informacii o sostoyaniya vozmusch'eniyah” [Local-optimal control of discrete systems with a delay in the control channel with incomplete information about the state of occurrence], Vestnik Tomskogo gosudarstvennogo universiteta, no. 1(34), pp.11-17, 2016, (in Russian).
13. F.R.Gantmaher, Teoriya matric [Matrix theory]. Moskva: Nauka, 1988, 552 p. (in Russian).
14. Dj.Demmel', Vy'chislitel'naya lineynaya algebra. Teoriya i prilojeniya [Computational linear algebra. Theory and applications]. Moskva: Mir, 2001, 430 p. (in Russian).
15. V.M.Verjbickiy, Vy'chislitel'naya lineynaya algebra [Computational linear algebra]. - Moskva: Vy'ssh. shk., 2009, 351 p. (in Russian).
16. A.N. Tihonova, A.V. Goncharskogo, Nekorrektny'e zadachi estestvoznaniya [Ill-posed problems of natural science]. Moskva: Izd-vo Mosk. un-ta, 1987, 299 p. (in Russian).
17. A.N.Tihonov, A.V.Goncharskiy, V.V.Stepanov, A.G.YAgola, CHislenny'e metody' resheniya nekorrektny'h zadach [Numerical methods for solving ill-posed problems]. Moskva: Nauka, 1990, 232 p. (in Russian).
18. A.S.Leonov, Reshenie nekorrektno postavlenny'h zadach: Ocherk teorii, prakticheskie algoritmy' i demonstracii [Solving ill-posed problems: an outline of the theory, practical algorithms, and demonstrations]. Moskva: Librokom, 336 p. (in Russian).
19. V.V.Voevodin, YU.A.Kuznecov, Matricy' i vy'chisleniya [Matrix calculations]. Moskva: Mir, 1984, 318 p. (in Russian).
20. A.I.Jdanov, Vvedenie v metody' resheniya nekorrektny'h zadach [Introduction to methods for solving incorrect problems]. Samara: Samarskogo gos. ae`rokosmicheskogo un-ta, 2006, 87 p. (in Russian).
Recommended Citation
Mamirov, U.F
(2018)
"Regular algorithms of local-optimal stabilization of control objects with incomplete information,"
Chemical Technology, Control and Management: Vol. 2018:
Iss.
2, Article 12.
DOI: https://doi.org/10.34920/2018.3.65-69