Abstract
The problems of formation of algorithms for regular synthesis of an adaptive observer for a linear stationary system are considered. Regularized algorithms are provided that allow identification of the parameters and state vector of the controlled object. Retrospective and iterative computational algorithms for simplified regularization are used as a basic regular scheme. The above expressions allow us to realize a stable procedure for estimating unknown parameters and the state of a linear stationary system in the course of its normal functioning.
First Page
69
Last Page
73
References
1. I.V.Miroshnik, Teoriya avtomaticheskogo upravleniya. Lineyny'e sistemy' [Automatic control theory. Linear system]. Sankt-Peterburg: Piter, 2005, 336 p. (in Russian).
2. S.K.Korovin, V.V.Fomichev, Nablyudateli sostoyaniya dlya lineyny'h sistem s neopredelennost'yu [State observers for a linear system with uncertainty]. Moskva: Fizmatlit, 2007, 224 p. (in Russian).
3. S.A.Krasnova, V.A.Utkin, Kaskadny'y sintez nablyudateley sostoyaniya dinamicheskih system [Cascade synthesis of state observers for dynamic systems]. Moskva: Nauka, 2006, 272 p. (in Russian).
4. B.I.Prokopov, “O postroenii adaptivny'h nablyudateley” [On the construction of adaptive observers], Avtomat. i telemeh., no. 5, pp. 95-100, 1981 (in Russian).
5. L.N.Sotirov, “Optimal'noe singulyarnoe adaptivnoe nablyudenie stacionarny'h diskretny'h sistem s ocenkoy nachal'nogo vektora sostoyaniya” [Optimal singular adaptive observation of a stationary discrete system with an initial state vector bound], Avtomat. i telemeh., no. 9, pp. 110-118, 1997 (in Russian).
6. V.V.Grigor'ev, N.V.Juravle'va, G.V.Luk'yanova, K.A.Sergeev, Sintez sistem avtomaticheskogo upravleniya metodom modal'nogo upravleniya [Synthesis of automatic control systems modal control method]. Sankt-Peterburg: SPbGU ITMO, 2007, 108 p. (in Russian).
7. N.D.Egupova, Metody' robastnogo, neyro-nechetkogo i adaptivnogo upravleniya [Robust, neuro-fuzzy, and adaptive control methods]. Moskva: Izd-vo MGTU im. N.E`.Baumana, 2001, 744 p. (in Russian).
8. A.N.Tihonov, V.YA.Arsenin, Metody' resheniya nekorrektny'h zadach [Methods for solving incorrect problems], Moskva: Nauka, 1986, 288 p. (in Russian).
9. V.Streyc, Metod prostranstva sostoyaniy v teorii diskretny'h lineyny'h sistem upravleniya [State space method in the theory of discrete linear control systems]. Moskva: Nauka, 1985, 296 p. (in Russian).
10. V.A.Morozov, Regulyarny'e metody' resheniya nekorrektno postavlenny'h zadach [Regular methods of solving ill-posed problems]. Moskva: Nauka, 1987, 316 p. (in Russian).
11. G.M.Vaynikko, A.YU.Veretennikov, Iteracionny'e procedury' v nekorrektny'h zadachah [Iterative procedures in incorrect problems]. Moskva: Nauka, 1986, 415 p. (in Russian).
12. A.B.Bakushinskiy, A.V.Goncharskiy, Iterativny'e metody' resheniya nekorrektny'h zadach [Interactive methods for solving incorrect problems]. Moskva: Nauka, 1989, 128 p. (in Russian).
13. F.R.Gantmaher, Teoriya matric [Matrix theory]. Moskva: Nauka, 1988, 552 p. (in Russian).
14. R.Horn, CH.Djonson, Matrichny'y analiz [Matrix analysis]. Moskva: Mir, 1989, 655 p. (in Russian).
15. A.I.Jdanov, Vvedenie v metody' resheniya nekorrektny'h zadach [Introduction to methods for solving incorrect problems]. Samara: Izd. Samarskogo gos. ae`rokosmicheskogo un-ta, 2006, 87 p. (in Russian).
Recommended Citation
Rasulev, А.Х
(2018)
"Algorithms of regular synthesis of adaptive observer for linear stationary system,"
Chemical Technology, Control and Management: Vol. 2018:
Iss.
2, Article 13.
DOI: https://doi.org/10.34920/2018.3.69-73